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Abstract—In the rapidly developing field of biomedical research, the search for new materials with improved
properties is crucial to moving the entire field forward. Double phosphates have generated significant interest
in a wide range of applications, ranging from drug delivery systems to catalysts for biomedical reactions, and
the fields of biomedicine and tissue engineering are no exception. In this article, we propose a method for
finding new double phosphate materials, which is based on machine learning, screening, and applying data
from structural databases, and use this methodology combined with chemical knowledge to propose several
promising materials for bone tissue engineering. For the selected candidates, we develop a solid-phase syn-
thesis procedure and apply their physical characteristics to confirm the results. In addition, the role of mor-
phology, that is, the porosity of frameworks based on these materials, is discussed from a biomedical point of
view, and several synthetic ways to adjust this parameter are proposed and investigated.
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INTRODUCTION

Compounds with formula M1IIM2IV(PO4)2 have
been intensively studied for several decades for their
potential use in the nuclear industry as a matrix for
conditioning actinide radioactive waste or as reaction
products of spent nuclear fuel with tributyl phosphate
during reprocessing.

They have also proven interesting as luminescent
materials, the properties of which depend on the relation-
ship between composition and crystal structure [1, 2].

The structure of compounds M1IIM2IV(PO4)2
comes from two different archetypes: cheralite and
yavapaiite structures. Cheralite is an anhydrous phos-
phate mineral with the chemical formula CaTh(PO4)2;
it is isomorphic to hattonite and monazite and was for-
merly known as brabantite. Yavapaiite has the formula
KFe(SO4)2 with some exceptions, which are also
described in the literature [3–5]. The ratio of cation
radii M1 and M2 seems to be the most important
parameter. The ratio between the ionic radii of diva-
lent and tetravalent cations in yavapaiite derivatives
leads to the ordering of these cations into well-differ-
entiated polyhedra (Fig. 1), while cheralite is the only
disordered structure found in compounds of the type
M1IIM2IV(PO4)2 and yavapaiite [3, 6–8].

Yavapaiite KFe3+(SO4)2 crystallizes in the mono-
clinic space group C2/m. The K cation is bonded to
ten anions of oxygen O. There is a scatter of K–O
bond lengths in the range of 2.88–3.17 Å. The Fe3+

cation is bonded to six O atoms to form FeO6 octahe-
dra, which share vertices with six equivalent SO4 tetra-
hedra. Among these bonds, there are two short (1.99 Å)
and four longer (2.04 Å) Fe–O bonds. The sulfur atom
S is bonded to four O atoms, forming SO4 tetrahedra,
which share vertices with three equivalent FeO6 octa-
hedra. The angles formed by vertex-sharing octahedra
range from 32° to 43°. Also, the scatter of S–O bond
lengths is observed in the range of 1.46–1.51 Å. Oxy-
gen occupies three nonequivalent positions. In the
first position, the oxygen atom forms a bond with one
Fe atom and one S atom, forming an angle of 150°. In
the second position, the oxygen atom is bonded in a
distorted geometry to three K atoms in equivalent
positions and one sulfur atom. In the third position,
the oxygen atom is bonded to one K atom, one Fe
atom, and one S atom [9].

Cheralite CaTh(PO4)2 crystallizes in the triclinic
space group P-1. The Ca cation is bonded to nine
anions of oxygen O. Ca–O bond lengths are in the
range of 2.44–2.93 Å. Th is bonded to ten O atoms.
Th–O bond lengths vary in the range of 2.41–2.94 Å.
The P cation has two equivalent positions. In the first
633
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Fig. 1. General view of the crystal structure of CaTh(PO4)2 (a) and KFe(SO4)2 (b).

(a) (b)
position, the P atom is located in a tetrahedron of O
oxygen atoms. The scatter of P–O bond lengths is in
the range of 1.54–1.57 Å. In the second position, the
P atom is also bonded to four oxygen O atoms in tetra-
hedral coordination: three bonds are short (1.55 Å)
and one bond is longer (1.57 Å). Atoms of oxygen O
are located in eight nonequivalent positions. In two
positions, the O atom is bonded to two equivalent Ca
atoms, one Th atom, and one P atom. In one position,
O is bonded to two Th atoms in equivalent positions
and one P atom. In four more positions, O forms a
bond with one Ca atom, one Th atom, and one phos-
phorus P atom. In one position, the O atom is bonded
to one Ca and two Th atoms in equivalent positions
and one P atom. In general, the ferric ion exhibits
octahedral distortions characteristic of the anionic
type of involvement. The average bond length between
ferric iron and oxygen is 2 Å, although in known struc-
tures the distance between atoms varies between 1.91–
2.24 Å [10].

In the cheralite family, compounds with the for-
mula MIIGe(PO4)2 are widely unknown, except their
cell parameters and the hypothesis about their space
groups; refinements are made on the basis of diffrac-
tion patterns of the compounds BaGe(PO4)2 [11],
SrGe(PO4)2 [12], and CaGe(PO4)2 [1] obtained by
solid-phase synthesis.

A series of phosphates with a general formula
AIIMIV(PO4)2 (A are alkaline-earth metals; M is Ti, Zr,
Ge, Sn, or Mo) [13, 14] can potentially be used as cata-
lysts, ion exchangers, and ionic conductors and for
immobilization of high level nuclear waste. In addition,
their chemical properties and thermal stability ensure
that compounds of this group are potential candidates
for the production of luminescent materials [9].

Biphosphate ceramics is used as various anti-oste-
oporotic drugs for fracture healing [15–17]. Many
JOURNAL OF SURFACE INVESTIGATION: X-RAY, SYNCHRO
drugs are now known to include strontium to promote
osteoblast-mediated bone formation and inhibit
osteoclast-mediated bone resorption and have been
widely studied both in vitro and in vivo [16, 18]. Stron-
tium prevents osteoclast-induced bone resorption, as
well as osteoclast differentiation [19], and strontium
preparations are also used to stimulate the bone-form-
ing function of osteoblasts and preosteoblastic prolifera-
tion/differentiation. They increase the expression of col-
lagen type I and osteopontin (OPN), which are import-
ant components of the organic bone matrix [20].

SrGe(PO4)2 has two phases. Low temperature
α-SrGe(PO4)2 (space group C2/c, the number of for-
mula units Z = 4) is a distorted derivative, and
β-SrGe(PO4)2 (C2/m, Z = 2) is completely isotypic to
yavapaiite [21].

Double phosphates have several advantages as scaf-
fold materials for bone tissue engineering. They have a
structure similar to the mineral component of natural
bone, making them biocompatible. Additionally, dou-
ble phosphates have osteoconductive properties,
which means that they can support the attachment,
proliferation, and differentiation of bone-forming
cells. In the context of bone tissue engineering, scaf-
folds made from double phosphates provide a porous
structure that enables cell and nutrient penetration
[22]. This allows new tissues to be regenerated, creat-
ing a three-dimensional environment that mimics the
natural extracellular matrix of bone. Connected pores
within the scaffold facilitate cell migration, nutrient
exchange, and deposition of extracellular matrix com-
ponents. In addition, the chemical composition of
double phosphates can be tailored to enhance their
biological activity and mechanical properties, pro-
moting better integration into the surrounding host
tissue [23]. Various techniques can be used to modify the
surface properties of double phosphate scaffolds, such as
TRON AND NEUTRON TECHNIQUES  Vol. 18  No. 3  2024
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their coating with bioactive molecules or incorporating
growth factors to stimulate bone formation.

Tissue engineering has brought new hope for bone
regeneration using a combination of cells, scaffolds,
and bioreactors. A synthesized bone scaffold is a
three-dimensional matrix that allows and stimulates
the attachment and proliferation of osteoinduced cells
on its surfaces. When developing bone scaffolds, the
following factors must be taken into account: biocom-
patibility in terms of cell attachment and proliferation,
as well as the absence of toxicity and inflammatory
reactions; biodegradability for programmed safe
replacement of scaffold material by osteoid deposi-
tion; mechanical properties that allow one to with-
stand the load during the recovery period; proper
structure in terms of porosity and pore size for cell
penetration, nutrient and waste transport, angiogene-
sis; sterility without loss of biological activity; and
controlled delivery of biologically active molecules or
drugs [24–29].

Scaffold pore size is a critical parameter that sig-
nificantly influences scaffold properties and perfor-
mance in tissue engineering. Pore size selection can
influence cellular infiltration, nutrient diffusion,
mechanical integrity, and tissue regeneration out-
comes [30]. The pore size of the scaffold directly
influences cell attachment, migration, and prolifera-
tion. Pores that are too small can impede cell penetra-
tion and limit the diffusion of nutrients and oxygen,
potentially leading to cell death and poor tissue regen-
eration. Conversely, pores that are too large may not
provide sufficient structural support for cell attach-
ment and tissue formation [31]. Therefore, optimal
pore size is important to facilitate cell–scaffold inter-
actions and ensures uniform distribution of cells
throughout the scaffold. Pore size also influences the
mechanical properties of scaffolds. Smaller pore sizes
generally increase the mechanical strength and stiff-
ness of the framework, which can be beneficial in
load-bearing applications. On the other hand, large
pore sizes may reduce mechanical properties but pro-
vide increased f lexibility and compressibility. It is crit-
ical to find a balance between structural integrity and
mechanical properties based on the specific require-
ments of the tissue being regenerated. In addition,
pore size influences the vascularization potential of
the scaffold. [32]. Smaller pores can restrict blood ves-
sel formation, preventing oxygen and nutrients from
reaching regenerating tissue. Larger pores, on the
other hand, may promote blood vessel ingrowth and
neovascularization, promoting better tissue integra-
tion and functionality. Therefore, determining the
appropriate pore size is essential to promote vascular-
ization and ensure successful tissue regeneration [33,
34]. Regarding the fabrication of scaffolds, the pore
size can be controlled using various methods, such as
freeze drying, electrospinning, or 3D printing [34–
38]. The choice of fabrication method can allow pre-
JOURNAL OF SURFACE INVESTIGATION: X-RAY, SYNCHRO
cise variation of pore size and pore distribution within
the scaffold structure.

Traditionally, the discovery and development of
these compounds have relied heavily on lengthy exper-
iments and trial and error methods. However, with the
advent of machine learning, is a promising new way to
speed up the process of discovering new materials has
appeared. Machine learning algorithms combined
with huge amounts of data can effectively predict the
structural characteristics and formation energies of
double phosphates and enable targeted synthesis. This
combination of computing power and analytical data
has enormous potential to revolutionize the develop-
ment of new materials, such as double phosphates,
thereby facilitating breakthroughs in various areas of
biomedical applications. This paper discusses the
application of machine learning methods to predict
double phosphate structures for biomedical applica-
tions. We explore the underlying principles, method-
ologies, and challenges associated with this approach.

Materials and Scaffold Production
We chose solid-phase synthesis as the method for

creating samples. The synthesis method is simple to
perform, does not require additional reagents, and
gives a good product yield [39]. To form ceramics,
rapid heating to 600°C and subsequent annealing for
5 h are required. The second stage of synthesis is
annealing at a temperature of 1000°C for 5 h for the
complete transition of germanium oxide into the
desired SrGeP2O8 ceramics.

The following reagents were used for the synthesis
of strontium–germanium phosphate: strontium car-
bonate (SrCO3, molar mass (Mw) = 147.63 g/mol,
98%, Sigma-Aldrich), germanium (IV) oxide (GeO2,
Mw = 104.61 g/mol, 99%, Sigma-Aldrich), and ammo-
nium dihydrogen orthophosphate (NH4H2PO4, Mw =
115.03 g/mol, 98%, Sigma-Aldrich). To create a porous
scaffold caffeine (C8H10N4O2, Mw = 194.19 g/mol, 99%,
Sigma-Aldrich) and crushed luffa (lat. Lūffa aegypti-
aca) were used as porogens.

The ability of the scaffold to adsorb proteins is one
of the main properties affecting the proliferation of the
implant. Proliferation is the growth of body tissue by
cell multiplication by division. Also, the ability to
adsorb affects differentiation of cells, and in the future,
their survival. This is why studying the adsorption of
scaffold materials is an important task. Albumin was
chosen as the protein for the study. Serum albumin is
synthesized in the liver, found in human blood, and
makes up the majority of all serum proteins (about
55%) contained in blood plasma [40]. To carry out the
measurements, in this work, we weighed out 100 mg of
caffeine and luffa samples as porogens and then added
10 mL of freshly prepared albumin solution to each
beaker. [41]. After this, the time was recorded and
2 mL of the solution was taken using a Mohr pipette
TRON AND NEUTRON TECHNIQUES  Vol. 18  No. 3  2024
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Fig. 2. The schematic reaction of ninhydrin with the amino
group of the analyte forms a compound similar to diketo-
hydrazine.
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The concentration of amino acids is usually mea-
sured using ninhydrin. Ninhydrin is a strong oxidizing
agent. It reacts with all α-amino acids in the pH range
from 4 to 8, forming a purple complex [42]. The same
reaction is given by primary amines, amino acids, and
ammonia, without the release of CO; amino acids
proline and hydroxyproline also interact with ninhy-
drin, but the resulting complex is yellow (Fig. 2). The
violet complex (Ruemann purple) can be detected by
photocolorimetry at a wavelength of 550 nm; the yel-
low complex, at a wavelength of 440 nm.

The reaction with ninhydrin is highly sensitive,
allowing the determination of amino acid content in
chromatograms, as well as columnar fractions with an
accuracy of several μg.

Selected samples were reacted with ninhydrin [43].
The optical density of the resulting solution was mea-
sured on a KFK-2 photocolorimeter using different
wavelengths 540 and 590 nm; based on the data
obtained, a calibration dependence of optical density
on the amount of albumin in relative units was con-
structed.

METHODS FOR DETERMINING PHYSICAL 
CHARACTERISTICS

Powder X-ray Diffraction

X-ray diffraction (XRD) patterns were recorded on
a D2 Phaser Advance X-ray diffractometer (Bruker,
United States) operating at 40 kV and 30 mA using
CuKα radiation (λ = 0.1542 nm) . Diffraction patterns
were collected at a temperature of 25°C in the angular
range from 20° to 70° with a step of 0.05° and a dwell
time of 12 s in each position.
JOURNAL OF SURFACE INVESTIGATION: X-RAY, SYNCHRO
Low-Temperature Sorption of N2

The specific surface area of the materials was ana-
lyzed using nitrogen adsorption/desorption isotherms
at −196°C measured on an ASAP 2020 accelerated
surface area analyzer and a porosimetric analyzer
(Micromeritics Instruments Corp., Unite States).
Before measurements, the samples were activated at a
temperature of 250°C for 10 h in a dynamic vacuum.
Nitrogen was used as the adsorbing gas.

X-ray Fluorescence Analysis
Nondestructive elemental analysis of the sample

was carried out on a Bruker M4 TORNADO. The
selected elements (Ge, Sr, and P) were detected at a
voltage of 50 kV and a current of 300 μA.

Machine Learning and Computational Methods
Starting from the initial structures of yavapaiite and

cheralite, two groups of candidate materials were cre-
ated by isoelectronic substitution of atoms in the sub-
lattices of these two materials. The first group was
formed by replacing one Ca atom with the following
atoms: Mg, Sr, Zn, Ba, Be, Eu, Sm, and Pb in the
cheralite structure. The second group was created by
simultaneously replacing several atoms in the yavapai-
ite structure, namely Fe, K, and S atoms with Ge, Sr,
and P, respectively. Having different ionic radii, these
cations must introduce changes in the structure, espe-
cially in the case of multiple substitutions.

To elucidate the stability of the two groups of these
compounds, we calculated the energy difference pro-
file for a set of relaxed substituted structures, given
that the energy above hull (EAH) for the experimen-
tally observed parent compounds is close to zero. For
the sake of a good balance between accuracy and com-
putational cost, a surrogate machine learning model
for the interatomic potential was used to calculate the
energies and forces. Graph neural network with uni-
versal interatomic three-body interaction potential
(M3GNet) [44], which is based on the Materials mas-
sive project data set, was selected as a modern univer-
sal potential for relaxing the structure of a compound
after atomic substitution and calculating the energy
per atom for each of them (Fig. 3). Experimentally
acceptable materials were determined, and their struc-
tural features were assessed. Relaxation of the struc-
ture was carried out using the conjugate gradient
method by simultaneously alternating the cell volume
and atomic positions.

RESULTS AND DISCUSSION
The graph neural network with the universal inter-

atomic three-body interaction potential (M3GNet)
made it possible to calculate the energy of substituted
compounds. As a metric for the stability of a com-
pound, it is common to plot the enthalpy of formation
TRON AND NEUTRON TECHNIQUES  Vol. 18  No. 3  2024
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Fig. 3. Schematic illustration of the conveyor for taking
away materials using machine learning proposed in the
study to find double phosphate structure modifications.
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of each of them; the dotted line shows the energy level
above the phase stability curve of 0 eV.

0

1.2

1.0

0.8

0.6

0.4

0.2R
el

at
iv

e 
en

th
al

py
 o

f 
fo

rm
at

io
n,

 eV
/a

t

M
gG

eP
2O

8

SrG
eP

2O
8

ZnGeP
2O

8

BaG
eP

2O
8

BeG
eP

2O
8

PbGeP
2O

8

EuGeP
2O

8

SmGeP
2O

8

as a function of composition, constructing a convex
polygon through phases that have less energy than any
other phases or their linear combination at a given
composition. The phases lying on this convex polygon
(convex hull) are thermodynamically stable, and those
above it are either metastable or unstable. The magni-
tude of the difference between the enthalpy of forma-
tion of a compound and the point of a convex polygon
with the same composition (the energy above the
curve of stable phases) quantitatively characterizes the
stability of the inorganic compound. Based on these
data, we can talk about their stability and preferred
substitutions in the composition. The arrangement of
compounds by energy is clearly shown (Fig. 4). It can
be concluded that the system with Sr as a substituting
atom is energy optimal.

All samples were examined by powder X-ray dif-
fraction. The diffraction pattern of the sample used as
the base material is shown in Fig. 5a (curve 2). The
data were analyzed using the Jana2006 software [45].
As a result, it was discovered that the material contains
SrGeP2O8 as the main phase (Fig. 5b). According to
data (entry in COD 1563127) [4], the structure of this
compound belongs to the monoclinic symmetry,
space group C12/m1 (12). The unit cell parameters
were determined, which were a = 7.8611(10) Å, b =
5.0397(7) Å, c = 7.3511(8) Å, and β = 93.833(12)°.

In addition, the sample of the base material con-
tains a small impurity of germanium oxide, which was
used as a source of Ge in the synthesis of ceramics.
The phase was identified as trigonal, space group
P3121 (152), and the cell parameters were a = b =
4.9811(10) Å and c = 5.6273(19) Å.

After adding porogens the samples were examined
using X-ray diffraction. It is worth noting that differ-
JOURNAL OF SURFACE INVESTIGATION: X-RAY, SYNCHRO
ent porogens had different effects on the chemical
composition of the original ceramics. Figure 6 shows
diffraction patterns: as is seen, in the case of caffeine,
the composition of the ceramics changed; a bright
peak from germanium oxide appeared at 2θ = 26°. The
luffa sample did not affect the composition of the
ceramics.

Low-temperature nitrogen sorption isotherms
were also analyzed to determine the available pore vol-
ume and specific surface area of the synthesized mate-
rials.

Nitrogen sorption isotherms were measured for the
samples. To do this, a weighed portion of the corre-
sponding sample was initially kept at 250°C for 15 h
under dynamic vacuum conditions to remove guest
molecules from the pores. Next, nitrogen adsorption-
desorption isotherms were measured at a temperature
of –196°C.

Both isotherms obtained are classified as type II,
according to the IUPAC classification. [46]. At low
pressures, the sorption isotherm behaves similar to the
type I isotherm; that is, monomolecular adsorption
occurs on active areas of the sorbent surface. Addi-
tional layers of adsorbate molecules are formed gradu-
ally, and the isotherm reaches a plateau. This means
that the surface of the sorbent is saturated with adsor-
bate molecules and additional layers no longer lead to
a significant increase in the adsorption volume. Type
II isotherms are characteristic of materials with meso-
pores (pores with sizes from 2 to 50 nm). In addition,
type II reversible isotherm without a pronounced step
in the low-pressure region is a typical form of the iso-
therm of nonporous or macroporous (up to 1 nm in
size) materials.

The Langmuir model was used to calculate the spe-
cific surface area. Although, according to the mea-
sured isotherms, the resulting materials may contain
TRON AND NEUTRON TECHNIQUES  Vol. 18  No. 3  2024
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Fig. 5. (a) Diffraction patterns of the synthesized SrGeP2O8 (2); for comparison the calculated profiles are given for germanium
oxide (3) and SrGeP2O8 (1). (b) Unit cell model of the SrGeP2O8 structure: large spheres represent Sr, tetrahedra represent PO4,
and the gray octahedra represent GeO6.
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meso- and macropores containing several layers of
nitrogen molecules, saturation plateau positions indi-
cate low porosity of the ceramics. Thus, the formation
of multilayers of sorbed N2 molecules can be
neglected. This makes the Langmuir model more suit-
able for calculating the specific surface area of the
materials under consideration (Fig. 7).

It was found that the sample containing caffeine as
a porogen showed higher porosity than the sample
with luffa.

For a more complete picture, X-ray phase analysis
of the obtained materials was carried out. The data on
the percentage content of elements are presented in
Table 2. From the elemental analysis data it is clear
that the materials are identical in chemical composi-
tion and the porogen does not have a significant effect
on the elemental composition of the ceramics.
JOURNAL OF SURFACE INVESTIGATION: X-RAY, SYNCHRO

Fig. 6. X-ray diffraction patterns of samples: initial ceram-
ics (4), samples with porogens luffa (3) and caffeine (2),
and germanium oxide (1).
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The study of protein adsorption on the surface of
the material allows us to draw conclusions about the
possibilities of using the material. Since the research is
aimed at developing materials for implants, protein
adsorption should be considered an important charac-
teristic. This parameter has a significant impact on the
proliferation of patient tissue on the surface of the
implant. In addition, the ability to adsorb protein on
the surface affects the survival rate of the implant,
whether it can provide the ability to attach cells to the
surface. A graph of protein adsorption versus time is
presented in Fig. 8.

As can be seen from the graph, the sample with caf-
feine adsorbs protein in a fairly large amount; depend-
ing on time the concentration of adsorbed protein
increases. In the case of luffa, the situation is com-
pletely different: the material does not adsorb protein
TRON AND NEUTRON TECHNIQUES  Vol. 18  No. 3  2024

Fig. 7. N2 adsorption–desorption isotherms for samples
with caffeine (1) and luffa (2).

14

12

10

8

6

4

2

0 0.60.40.2 1.00.8

A
m

ou
nt

 o
f a

ds
or

be
d 

N
2,

 c
m

3 /g

Relative pressure P/P0

1

2



USING OF MACHINE LEARNING CAPABILITIES 639

Table 1. Data calculated from the adsorption isotherms of the synthesized samples. Pore volume is given for relative
pressure P/P0 = 0.975. Specific surface area was calculated according to the Langmuir model

Porogen
Pore volume, 

cm3/g
Specific surface 

area, m2/g
Langmuir constant b, 

(mmHg)–1
Adsorption monolayer 

capacity Qm, cm3/g
Correlation 
coefficient

Caffeine 0.0153 7.6 0.060 1.75 0.99976
Luffa 0.0031 2.62 0.019 0.60 0.99934

Table 2. Elemental analysis results for materials with porogens

Porogen
Content, %

Sr Ge P

Caffeine 30.04 28.76 41.2
Luffa 31.12 29.86 39.2

Fig. 8. Graph of albumin adsorption by samples with caf-
feine (1) and luffa (2) as a function of time.
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during the first 1.5 h, after which a sharp jump in pro-
tein adsorption occurs.

CONCLUSIONS

Using the graph neural network M3GNet the most
stable substituted structures of the minerals yavapaiite
and charolite were found. The most stable structure
turned out to be one, in which K was replaced by Sr
and Fe was replaced by Ge. Based on theoretical sta-
bility studies, this system was chosen for the solid-
phase synthesis of ceramics for bioapplications. In
addition, Sr in bioceramics has a positive effect on the
recovery process. Preparations containing strontium
are actively used to treat bone defects. SrGeP2O8 was
obtained by solid-phase synthesis. Based on it, mate-
rials with the addition of porogens were also synthe-
sized. The structure of the compounds was studied
using powder X-ray diffraction. Diffraction of the
samples with porogens made it possible to find out
JOURNAL OF SURFACE INVESTIGATION: X-RAY, SYNCHRO
that, depending on the porogen, the composition of
the original ceramics can change. The addition of caf-
feine as a porogen made it possible to obtain a material
with a specific surface area of 7.6 m2/g, which is 3
times the surface area of the material with luffa. The
sample with caffeine has good properties for protein
adsorption on the surface. This was demonstrated by
the experiment on protein adsorption; the material
accumulates protein gradually, increasing accumula-
tion over time. Based on these data, it can be con-
cluded that the material is promising for practical use
as ceramics for medical implants.
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