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Abstract—This work discusses the predictable control of plasma-assisted physical vapor deposition (PVD) 
of coatings. The multiple process parameters and the instability of the nonequilibrium ion plasma system cre-
ate substantial obstacles to the wide industrial application of promising multicomponent functional coatings. 
Here we propose a solution to this problem, which includes: creation of a database of diamond-like carbon 
(DLC) coatings to identify a limited set of adjustable process control parameters, determination of how these 
parameters affect the coating properties, analysis of the revealed effects using statistical methods and neural 
network algorithms, and use of the results for the predictable tuning of specified coating properties. The ob-
ject of research is original DLC coatings whose structure is stabilized with nitrogen instead of conventionally 
used hydrogen. The experimental database of DLC coatings is created based on our previous studies and in-
cludes structural, morphological and architectural characteristics of coatings, various types of substrates, sub-
layers, physical, mechanical and tribological properties, and various combinations of coating deposition para-
meters. A specific problem is solved to determine the influence of deposition parameters such as chamber 
pressure P, stabilizer content (% nitrogen), ion flux rate (coil current λ) and deposition time t on hardness H 
and elastic modulus E of coatings. Based on the results obtained, the deposition parameters are optimized so 
as to obtain predictable strength values of the formed carbon coating. The optimization procedure is deve-
loped using both classical statistical methods and modern algorithms of ridge regression, randomized trees  
(ExtraTrees), and a fully connected neural network (multilayer perceptron MLP). 
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1. INTRODUCTION AND PROBLEM 
STATEMENT 

Despite a long history of plasma-assisted deposi-
tion technology, there are great difficulties with its 
application to industry, including tool production, 
microelectronics, optics, medicine, and to a very li-
mited extent mechanical engineering, thermal power 
engineering (turbine blades, valves, etc. [1–7]) and 
decorative arts (gold-colored titanium nitride films). 
The main problem in technology transfer is the multi-
parameter nature of the process [7, 8]. The variety of 
vacuum systems, vapor deposition techniques, and  
 

apparatuses for plasma-assisted deposition leads to a 
very complex set of parameters, each of which deter-
mines the final composition, structure and properties 
of the coating. In the most general terms, the set of 
parameters can be divided into several groups: pro-
cess parameters and substrate parameters are consi-
dered as input parameters, and coating parameters are 
regarded as output parameters. The first and largest 
group of process parameters, e.g., in arc evaporation, 
includes such characteristics as the number and qua-
lity of cathodes, arc current and voltage, operating 
chamber pressure, deposition rate, bias voltage, de-
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position angle, presence or absence of magnetic sepa-
ration, and others. Magnetron sputtering parameters 
are somewhat different, but their number is also 
large. As for the substrate parameters, it is necessary 
to account for the substrate composition, surface qua-
lity (roughness, chemical purity, the presence of 
stresses, etc.), structural-phase state, mechanical cha-
racteristics, temperature, and temperature drift during 
deposition. The group of output parameters is deter-
mined by the coating functionality, and it can also be 
very extensive. This group necessarily includes the 
elemental composition, parameters of the structural-
phase state (number, dispersion and morphology of 
phases, structural type of coating in accordance with 
the Movchan–Demchishin–Thornton diagram [9, 
10]), coating architecture (2D/3D morphology, sin-
gle/multilayer), and a set of properties determined by 
the coating service conditions. As a result, the total 
number of descriptors needed for the programmable 
coating deposition can include 20–40 parameter va-
lues. In this regard, the predictable synthesis of plas-
ma-deposited coatings is related to the use of ma-
chine learning and neural network algorithms, which 
cannot be tested without adequate databases. The 
need for the use of artificial intelligence in plasma-
assisted vapor deposition of coatings has been recog-
nized only recently due to its successful applications. 
One of the first databases was created specifically for 
diamond-like coatings (DLC) [11], which included 
the results of about 80 researchers published in more 
than 100 articles. The constantly updated database 
currently contains data for more than 800 coatings, 
including 25 types of DLC coatings (a-C:H, a-C, Cr-
DLC (a-C:Cr), Ti-DLC (Ti-C:H), etc.) and 16 types 
of methods for their deposition. It also includes tribo-
logical coatings, grouped according to 55 types of 
counterbodies and 9 friction test methods. However, 
the search for optimal combinations of descriptors 
for each data set, including using the here presented 
database, is in a very early stage [12–14]. 

The accurate prediction of properties of plasma-
assisted PVD coatings is also complicated by the fact 
that plasma is a nonequilibrium state of matter that is 
able to evolve from one unstable state to another un-
der the influence of fluctuating parameters. A predic-
tion system for such transitions has not yet been de-
veloped. That is why coatings deposited with the 
same technology and equipment, with the maximum 
number of fixed parameters, show a wide scatter of 
values, making the use of computer-aided prediction 
algorithms less effective. For example, inhomogenei-
ties in the evaporated material lead to unstable plas-

ma discharge and therefore inhomogeneous ion flux. 
In this work, we use sintered graphite powder ca-
thodes that contain pores, interparticle melting zones, 
and powder particles with different crystallographic 
orientations. During laser evaporation of graphite, all 
these inhomogeneities present fluctuating (random) 
parameters that affect ion flux during DLC coating 
deposition [15, 16]. 

Thus, predictable control of plasma-assisted coat-
ing deposition is a serious challenge in modern sur-
face engineering. One of the ways to solve this prob-
lem is to identify universal relationships (at least em-
pirical) between the group of variable process para-
meters and coating properties. This will help reduce 
the total number of control parameters and the influ-
ence of fluctuations in coating technology. The main 
purpose of this work is to create a database of reli-
able experimental data, to analyze the data using neu-
ral network algorithms, and to establish universal re-
lationships for diamond-like carbon coatings. 

2. MATERIALS AND METHODS 

The substrates used in the study were polished 
plates (roughness grade not less than 10 with Ra ≤ 

0.12 μm and Rz ≤ 0.6 μm according to GOST 2789-73) 
with dimensions of 50 × 30 × 5 mm made of low-alloy 
structural steel 40CrNi2Mo with tempered sorbite 
structure (after hardening and high tempering at 
600°C), which is widely used in mechanical engi-
neering. This substrate material was chosen because 
it is often used in loaded friction units whose contact 
surfaces can be effectively protected by DLC coat-
ings [17–19]. The physical and mechanical character-
istics of 40CrNi2Mo steel substrates after quenching 
and high tempering were: Н = 2.5 GPa, Е = 200 GPa, 
Н/Е = 0.0125, Н 

3/Е 
2

 = 0.00039 GPa. 
In comparison with similar physical and mechani-

cal characteristics of diamond-like coatings, the sub-
strate samples were soft (plastic). A significant diffe-
rence in the properties could negatively affect the ad-
hesion of coatings, so we also examined cases with 
DLC coatings deposited on a Ti or TiN sublayer. 

Plasma-assisted deposition of carbon coatings was 
carried out on a BRV600 vacuum unit (BelRosVak 
LLC, Belarus), which includes both three-cathode arc 
evaporation of metallic materials and magnetron 
sputtering from targets of various compositions. The 
unit is equipped with a high-power ion source and a 
system for sputtering carbon coatings by laser evapo-
ration of graphite. 
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Table 1. Experimental relationships between the values of the parameters %N and PN of the BRV600 test unit 

%N, % 0 1 2 3 4 5 6 7 8 9 10 

PN, Pa 0.00034 0.0056 0.013 0.021 0.031 0.041 0.053 0.066 0.078 0.092 0.11 
  

%N, % 11 12 13 14 15 16 17 18 19 20  

PN, Pa 0.12 0.14 0.15 0.17 0.19 0.20 0.22 0.23 0.25 0.27  

 
Before coating deposition, the surface of the sam-

ples was ion etched in a built-in Ar ion source at a 
chamber pressure of ~0.7 Pa, a temperature of 
~400°C, and a bias voltage of 1000 V for 5 min. 
Since the system was initially multiparameter, some 
of the parameters should be fixed to reduce the num-
ber of experiments and ensure the reproducibility and 
a more accurate analysis of experimental results. As 
fixed coating deposition parameters for testing the 
operating modes of the BRV600 unit, we took the 
characteristics of the carbon sputtering system, which 
remained unchanged in all experiments: 

– graphite evaporation source was Q-switching la-
ser (without an amplifier) Qsw = 350 μs, 

– arrester voltage 300 V, 
– laser frequency 10 Hz, 
– laser radiation energy 600–700 mJ, 
– cathode scanning speed (stepper motor speed) 

1 mm/s, 
– laser scanning was performed across the end 

surface of the cathode rotating about the cylinder axis 
with a speed of 1 rpm, 

– cylindrical cathodes were made of VP-6 gra-
phite powder. 

The following were selected as variable parame-
ters that determine the range of measured and opti-
mized properties of the coating:  

– operating chamber pressure Р = 0.011–0.31 Pa, 
– induction coil (solenoid)1 current λ = 1–5 А, 
– the amount of nitrogen supplied to the chamber 

%N = 1–5 (determined in % by the gas supply valve 
of the test unit), 

– coating deposition time t = 10–35 min. 
The parameter %N is especially noteworthy. In 

this work, the structure of DLC coatings was stabiliz-
ed with nitrogen instead of explosive hydrogen (see 
below for details). Typically, the use of plasma-form- 

 
__________________ 
1 BRV600 unit has five solenoids (induction coils): solenoids 1–3 

are used for deposition of cermet coatings in the main chamber, 
solenoids 4, 5 are used for deposition of carbon coatings; the 
coil current magnitude determines the flux rate of deposited 
carbon ions. 

ing gases (Ar, H2, N2, C2H2, CH4, etc.) in vacuum 
technologies is characterized by the partial pressure 
value (PN for nitrogen). However, in technological 
practice, particularly in the BRV600 unit, the work-
ing gas is supplied to the chamber through regulating 
valves that are calibrated in percentage of valve 
opening (%N for nitrogen). This process parameter is 
convenient in practice and in experiments (e.g., due 
to smooth adjustment at small %N values). There-
fore, we used the parameter %N in experiments and 
for database creation to characterize the amount of 
nitrogen in the working chamber during coating de-
position. The nonlinear correspondence between the 
parameters %N and PN obtained on the basis of empi-
rical data from the BRV600 unit is shown in Table 1. 
If necessary, it can be used to transcribe the results 
obtained in this work depending on the parameter PN. 

One of the drawbacks of carbon coatings is that 
tetrahedral amorphous carbon (ta-C) films with an 
over 70% sp3 bond content and a thickness exceeding 
~500 nm are prone to spontaneous cracking. To in-
crease the coating thickness, which is often required 
for their applied use, the coatings are stabilized with 
hydrogen. The most common working gases for the 
production of ta-C:H coatings are acetylene C2H2 or 
methane CH4. This technology, with all its advan-
tages, has an increased fire and explosion hazard. 
Here we made an attempt to stabilize DLC coatings 
with nitrogen, which was used as a working gas in-
stead of explosive carbon gases. The nitrogen stabili-
zer content in the coating is actually controlled by the 
parameter %N. 

In carbon coating studies, nitrogen is used as an 
alloying element to form, e.g., amorphous carbon nit-
ride a-CNx films [20, 21]. Differences in the struc-
ture of amorphous carbon with a sp3 bond content of 
no more than 30–50% (a-C) and amorphous carbon 
nitride (a-CNx) are demonstrated in Fig. 1. In the 
case of a-CNx films, nitrogen atoms change the 
structure of carbon films, increasing the number of 
phonon modes available for excitation [22]. It is be-
lieved that a-CNx films have a fullerene-like micro-
structure with curved and intersecting basal planes. 
The instrumental determination of such a microstruc- 
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Fig. 1. Schematic view of the atomic structure of carbon a-C (a) and a-CNx coatings (b). 

 
ture is very problematic and can be done, perhaps, 
only by molecular dynamics simulations. 

Most of the coating studies were carried out using 
scanning electron microscopy, X-ray (EDX) micro-
analysis, and X-ray photoelectron spectroscopy 
(XPS). The physical and mechanical properties of 
samples were evaluated by continuous indentation 
tests. 

The microstructure, surface condition and fine 
structure of the coatings were examined by scanning 
electron microscopy on a ZEISS Crossbeam 340 dual 
beam microscope, which combines high-resolution 
electron microscopy (up to 2 nm) with the possibility 
of surface etching and cross-sectional sample prepa-
ration by an ion beam directly in the vacuum cham-
ber of the microscope, which allows a deep examina-
tion of all types of surfaces at the nanostructural le-
vel. Linear assessment of layer thickness, inclusion 
sizes, phase components, pores, etc. was done using 
AZtec software for an electron microscope. 

The chemical composition of the coatings was de-
termined on an energy dispersive X-ray spectrometer 
(EDAX) X-Max 50N (Oxford Instruments) coupled 
with the ZEISS Crossbeam 340 electron microscope. 

The accuracy of the data on the elemental and 
phase composition of the surface, thin surface layers, 
films and coatings was improved by experimen-
tal studies on a surface analysis system (SPECS,  
Germany) using X-ray photoelectron spectroscopy. 
The monochromatic AlKα line with an energy of 
1486.6 eV was chosen as the exciting radiation. The 
energy resolution of the analyzer at constant trans-
mission energy was 0.45 eV at the Ag3d3/2 peak. The 
vacuum during spectra recording was maintained at a 
level of 1 × 10–10

 mbar. The error in measuring the 
binding energy and line widths at half maximum 
(FWHM) was ±0.1 eV, and in relative intensity mea-
surements it was ±10%. 

The qualitative and quantitative composition of 
the surface was analyzed by XPS survey spectra. In 
addition, photoelectron lines were determined for the 
chemical elements on the surface by which it was 
possible to reliably identify the chemical bond where 
a particular element was involved. As a result, we 
could determine the phase to which this element be-
longed. The SPECS surface analysis system is equip-
ped with an ion gun for surface sputtering and allows 
recording spectra at each depth. It also has a special 
program for decomposing experimental spectra into 
components, each of which corresponds to a specific 
chemical bond. Of great importance are the experi-
mental statistics for plotting smooth curves and the 
scanning step. In most cases, spectra were obtained 
with a scanning step of 0.1 eV and a maximum num-
ber of pulses of up to one hundred thousand. The un-
certainty in the spectral line profile in this case reach-
ed about ~0.3%, and the relative error (intensity ratio 
of two lines) was no more than 2–3%. Thus, the XPS 
method can be used to experimentally determine, 
with great accuracy, changes in the element content 
and its chemical bonds across the thickness of a thin 
layer, film or coating. 

The physical and mechanical properties of sam-
ples at the nano- and microscale were examined us-
ing a Nanotest 600 test platform. The elastic modulus 
E and hardness H were determined by continuous in-
dentation tests [23]. Microscale measurements (load 
less than 2 N, indentation depth more than 0.2 µm) 
were conducted with a tetrahedral Vickers indenter, 
and a triangular Berkovich indenter was used for na-
noscale measurements (indentation depth no more 
than 0.2 µm). The tests and processing of the obtain-
ed data were carried out in accordance with GOST 
8.748-2011 [24]. The measurements were performed 
on 3–7 samples of the same type. Indents were made 
in three different randomly selected and spaced zones 
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on the surface of each sample, which corresponded to 
the positioning of the optical system of the Nano-
test 600 platform. Within each zone, indents were lo-
cated evenly, with the minimum possible density. 
The statistical processing of the measurement results 
was carried out taking into account at least 10 indent 
values in each positioning zone. The total number of 
indents in each zone was different and depended on 
the quality of the coating surface; indents made on 
surface defects or in high roughness areas were not 
taken into account in statistical data processing. This 
study reports the average estimates of the measured 
values in accordance with the data processing recom-
mendations of GOST R 50779.25-2005 and GOST R 
ISO 16269-4-2017 [25, 26]. In addition to the struc-
ture-dependent hardness H and the structure-indepen-
dent elastic modulus E determined by the indentation 
method, metallic materials are often characterized by 
the ratios of H/E and Н 

3/Е 
2. The first ratio deter-

mines the resistance to elastic deformation and is of-
ten an indirect indicator of the level of, e.g., tribolo-
gical properties: the higher the H/E, the higher the 
wear resistance during friction [27; 28, p. 608]. The 
Н 

3/Е 
2 ratio determines the resistance of the material 

to plastic deformation [29, p. 134]. 
Using the above research methods and by varying 

the deposition parameters, we created an experimen-
tal database for DLC coatings. Its fundamental diffe-
rences are: (i) the use of laser evaporation of graphite 
instead of magnetron sputtering used in [11], (ii) the 
use of sublayers of various compositions, and (iii) the 
substrate made of a commercial material, unlike Si or 
corrosion-resistant austenitic steel 08Cr18Ni10Ti of-
ten used for purely research purposes. The results of 
the database analysis and processing are presented in 
subsequent sections of the paper. 

3. RESULTS AND DISCUSSION  

3.1. Composition and Structure of Coatings 

The typical structure of the studied DLC coatings 
is shown in Fig. 2. The carbon coatings are single 
layers with a thickness of 0.6–1.4 µm. Their structure 
is generally characterized by high density and ho-
mogeneity. In some cases, the cross-sectional coat-
ing structure reveals hardly distinguishable layers 
(Figs. 2a–2c), which can probably be caused by dif-
fusion processes at the substrate–coating and coat-
ing–medium interfaces. The reasons for the forma-
tion of the layers were not studied in more detail. The 
database of DLC coatings was created using various 
sublayers (Figs. 2d–2h). The sublayer was mainly ap-

plied for tribological purposes in order to reduce 
stresses at the substrate–coating interface, but the tri-
bological aspect of the coatings was not discussed. 

Electron microscopic examination revealed tight 
adherence of the coating to the substrate. The boun-
dary between them does not show any defects or 
signs of deformation, which can be characterized as 
satisfactory adhesion. High-rate deposition modes led 
to the formation of porosity in the sublayer (Figs. 2e 
and 2f), especially pronounced closer to the sub-
strate. However, as can be seen from the micro-
graphs, the presence of porosity in the sublayer did 
not affect the tightness and morphology of the sub-
layer–substrate and sublayer–coating interfaces. 

The samples in all micrographs in Fig. 2 are tilted 
toward the observer at an angle of 15°–28° to de-
monstrate the coating surface morphology. One can 
see some single artifacts and droplet defects that are 
in the stage of healing [30], i.e., gradual smoothing 
of valleys due to the deposition of new atomic layers 
of the coating. The surface quality is in general satis-
factory and does not affect the measurement results 
of physical, mechanical or tribological properties of 
coatings. A typical distribution of chemical elements 
in the resulting carbon coatings is presented in Fig. 3. 

The physical meaning of using nitrogen in a DLC 
coating, whose content is controlled by the parameter 
%N, is to stabilize the carbon layer. The role of nitro-
gen is similar to that of hydrogen in DLC coatings, 
and it is used to replace explosive hydrogen in the 
considered plasma-assisted deposition technology. 
The use of stabilizers should not lead to the forma-
tion of new phases in the coating, but is intended to 
modify the spatial distribution of carbon atoms 
(Fig. 1). Note that electron microscopy revealed no 
new phases in the resulting coatings. The use of nit-
rogen as a stabilizer also resulted in coatings with a 
thickness much greater than the critical thickness of 
pure ta-C coatings, which is ~500 nm. The stress-
strain state of the ta-C coating due to larger thickness 
leads to its spontaneous brittle cracking and chipping 
[31, 32]. 

A qualitative analysis of the coatings on each 
sample was carried out using the XPS method. Sur-
vey spectra were obtained, one of which is shown in 
Fig. 4a. The survey spectra were used to select ener-
gy ranges for scanning the 1s lines of carbon, oxy-
gen, nitrogen and sodium, and the 2p lines of chlo-
rine and sulfur (their presence on the surface is due to 
contamination during sample preparation). The kine-
tic energy range of 230–301 eV was chosen to record 
C(KVV) Auger electron spectra of carbon (Fig. 4b).  
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Fig. 2. Cross-sectional structure of nitrogen-stabilized DLC coatings (SEM, FIB cross-sections): a–c—carbon coatings of differ-
ent thickness without a sublayer, d–f—carbon coatings with a Ti sublayer of different thickness, g, h—carbon coating with a TiN 
sublayer. 

 
The spectral background during quantitative analysis 
for XPS spectra, caused by elastically scattered elect-
rons, was subtracted by the Shirley method using 
Casa XPS SPECS software. XPS analysis data on the 

surface chemical composition of the DLC-coated 
samples are given in Table 2. 

The sp2/sp3 carbon content was determined from 
the C (KVV) Auger spectra shown in Fig. 4. Data on  
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Fig. 3. Through-thickness distribution of elements in a 
nitrogen-stabilized DLC coating with a Ti sublayer, 
EDAX data––distribution along the secant line (line 2 
perpendicular to the surface) from the substrate towards 
the surface of the DLC layer (color online). 

 

 

Fig. 4. XPS survey spectrum from the surface of the 
DLC carbon coating (a), and C (KVV) Auger spectrum 
for estimating the sp2/sp3 carbon content in the coating 
(b). 

 
the sp2 and sp3 fractions in the synthesized films were 
obtained using X-ray excited C (KVV) Auger elec-
tron spectra along with XPS C1s spectra. The initial 
basis spectra for quantitative assessments were the C 
(KVV) Auger spectra of graphite with sp2

 = 1 and the 
spectra of diamond with sp2

 = 0, which are usually 
used to identify the hybridization state of carbon  
atoms [33–36]. The distance between the maximum 
and minimum in the differentiated C (KVV) spec-
trum, marked in Fig. 4b, corresponds to a sp3 carbon 
content of about 70%. The relationship with different 
relative fractions of sp2 and sp3 phases was derived 
using the equation sp2/sp3

 = x/(1 – x), for the x fraction 
of the sp2 phase varying from 0 (diamond) to 1 (gra-
phite) [30]. 

The results obtained (Table 2) show that the car-
bon coatings synthesized on 40CrNi2Mo steel sam-
ples can be classified in accordance with modern 
concepts as DLC coatings and assigned to nitrogen-
doped tetrahedral amorphous carbon (ta-C:N) coat-
ings. This is indicated by the presence of nitrogen in  
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Table 2. Results of XPS quantitative analysis of the chemical composition and electronic configurations of carbon coatings 

Elemental composition of the coating surface, at % Bond content, fractions 
Coating characteristics 

O 1s C 1s N 1s Na 1s Cl 2p S 2p sp2 sp3 

Coating with survey spectrum  
(Fig. 4) 

6.3 78 15 0.36 0.34  0.28 0.72 

Database summary results 5.6–12.0 72.2–92.4 2.0–16.5 0.1–0.7 0.2–0.4 0.5–0.8 0.1 0.9 

 
the coating (2.0–16.5%), which according to XPS 
data forms no bonds typical of chemical compounds, 
and by the high content of diamond-like sp3 carbon 
configuration exceeding 70% in all studied coatings. 

3.2. Effect of Deposition Parameters on the Physical 
and Mechanical Properties of Coatings 

The generated experimental database of DLC car-
bon coatings was used as the main source of informa-
tion for plotting the curves of the measured physical 
and mechanical properties of coatings against coating 
deposition parameters. It was also used to implement 
machine learning and neural network algorithms, the 
results of which are presented in the following sec-
tion. 

The physical and mechanical characteristics con-
sidered are the elastic modulus E and hardness H de-
termined by continuous indentation tests in accor-
dance with measurement procedures and available 
equipment [23–26]. The group of physical and me-
chanical properties also included the calculated va-
lues of Н/Е and Н 

3/Е 
2 ratios, which determine the 

coating resistance to elastic and plastic deformation, 
respectively [24–26]. However, with a sufficiently 
large sample of data, these ratios are very similar to 
the dependences of the most unstable component of 
the ratio that is hardness H for plasma-assisted PVD 
coatings. Therefore, the curves of the Н/Е and Н 

3/Е 
2 

ratios versus variable deposition parameters (Р, λ, 
%N, t, see Sect. 2) are not given, because their varia-
tion is qualitatively the same as that of the hardness 
curves. 

As a result of statistical processing, one-parameter 
curves were obtained showing the effect of the coil 
current λ, which characterizes the volumetric flux 
density of deposited carbon ions, and the amount of 
nitrogen supplied to the chamber %N on the physical 
and mechanical characteristics of coatings E and N 
(Figs. 5 and 6). Since the variation of deposition pa-
rameters was discrete, the average statistical values 
of hardness H corresponding to each fixed value of 
the parameters λ and %N are marked with dots in 
Fig. 5. In addition to the curve of the statistical avera-

ges of H (Medium), Figs. 5a and 5b show the scatter 
ranges of H (Maximum–Minimum) observed in the 
database as a whole. 

The resulting dependence H = f (%N) is quite 
complex. It can be approximated by a third-degree 
polynomial, but the accuracy of such an approxima-
tion is unsatisfactory: the root mean square (RMS) 
error is 13.26 GPa and higher (i.e., exceeds 50%). 
Therefore, the approximation curve for this depen-
dence was not plotted. Nevertheless, the dependence 
H = f (%N) in Fig. 5a is quite indicative even without 
approximation. The H = f (%N) curve clearly defines 
the interval of optimal values for the parameter %N, 
equal to N = 5–8%. 

The H = f (Р) and H = f (t) curves are not presented 
in this section due to their very simple geometry with 
a clear physical meaning. The dependence H = f (Р) 
increases almost linearly as the vacuum improves, 
which corresponds to the physical meaning of plas-
ma-assisted sputtering in vacuum: the lower the pres-
sure in the working chamber, the less the ion flux is 
obstructed during coating deposition. The introduc-
tion of nitrogen into the chamber disrupts the linea-
rity of this dependence, because nitrogen stabiliza-
tion of carbon coating (parameter %N) has a stronger 
and nonlinear effect on coating hardness H (Fig. 5a). 
Sputtering time t has a linearly proportional effect on 
the coating thickness, but has virtually no effect on 
hardness H. The dependence H = f (t) remains practi-
cally constant throughout the entire variation range 
of the parameter t = 10–35 min (subject to the correct 
indentation procedure during which the load should 
be adjusted depending on the coating thickness in ac-
cordance with [24]). 

Of the hardness curves plotted, only the H = f (λ) 
curve can be approximated by the least squares me-
thod (LSM) with satisfactory accuracy (Fig. 5b). The 
third-degree polynomial (1) describes the experimen-
tal dependence H = f (λ) with an RMS error of 
1.68 GPa (Fig. 5c): 

( ) : 24.3235 17.3861H      

 2 38.29617 0.9285882 .     (1) 
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Fig. 5. Experimental curves of hardness H of carbon 
coatings versus deposition parameters: a—amount of ni-
trogen in the chamber %N (% of valve opening), b, c—
induction coil current λ: experimental (b) and approxima-
tion curve (c) (color online). 

 
Since the induction coil current λ determines the 

volumetric flux density of deposited carbon ions, the 
values of λ cannot be too small or too large. At small  
 

 

Fig. 6. Approximation curves of elastic modulus E of 
carbon coatings versus deposition parameters: a—amount 
of nitrogen in the chamber %N (% of valve opening), b—
chamber pressure P, c—induction coil current λ. 

 
values of λ, the resulting coating is either loose or is 
deposited too slowly. At large λ, the substrate is ion 
etched. Therefore, Figs. 5b and 5c show only the 
range of operating values of λ. This entire range cor-
responds to a rather high hardness of DLC coatings, 
and the most optimal values are λ = 3.0–3.8 A. 

In contrast to the hardness curves, the experimen-
tal dependences of elastic modulus E on all three va-
riable parameters Е = f (%N), Е = f (Р) and Е = f (λ) 
are approximated by least squares using a third-de-
gree polynomial with sufficient accuracy (RMS%N = 
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19.36 GPa, RMSР = 0.0933 GPa, RMSλ = 9.15 GPa). 
Therefore, Fig. 6 shows approximated experimental 
curves plotted using the corresponding polynomial 
functions (2)–(4): 

(% ) : 179.42 25.656%E N N   

 2 32.4962% 0.06209% ,N N   (2) 
( ) : 255.088 568.477E P P   

 2 32027.6312 2751.2627 ,P P   (3) 
( ) : 268.94 30.715E      

 2 311.4374 0.69053 .     (4) 
The experimental results of Figs. 5 and 6 obtained 

through data analysis and statistical data processing 
reveal the following trends: 

1) the dependences of H and E on each of the va-
riable parameters %N, P and λ show a completely 
different behavior, 

2) each parameter %N, P and λ changes H and E 
in a similar way, i.e., the dependences, e.g., Н = 

f (%N) and Е = f (%N), are almost identical qualitati-
vely. 

The first trend indicates that since the three consi-
dered variable parameters affect the physical and me-
chanical properties in different directions, the deposi-
tion mode of carbon coatings can and should be opti-
mized with respect to these parameters. The second 
trend suggests that the effect of the parameters %N, P 
and λ on the strength properties of coatings (H and E) 
is not stochastic, but is based on common phenomena 
and processes whose physical meaning was partially 
discussed earlier. 

Based on the plotted one-parameter curves, it is 
easy to identify the range of the process parameters 
%N, P and λ that reliably provide stable physical and 
mechanical properties of the studied DLC coatings 
determined by continuous indentation: 

– optimal range of variable process parameters: 
%N = 5–8, λ = 3.0–3.8 А, 

– predicted physical and mechanical properties of 
DLC coatings: Н ≥ 18–20 GPa, Е ≥ 250 GPa, Н/Е ≥ 

0.07, Н 
3/Е 

2
 ≥ 0.08 GPa. 

The specified level of physical and mechanical 
characteristics of coatings can be achieved outside 
the given range of optimal parameter values, but as 
shown by the analysis of the generated database, sta-
ble repeatability of these properties is not guaranteed 
in this case. 

Each of the variable parameters %N, P and λ is 
considered independent from the point of view of 
plasma-assisted deposition technology. However, 
their different effects on H and E indicate the neces-

sity of studying their combined influence. For this 
purpose, the generated database was used to study 
the two-parameter (pairwise) effect of the parameters 
%N, P, λ and t on the hardness H of carbon coatings 
using machine learning methods and neural network 
algorithms. Its results are presented in the next sec-
tion. 

3.3. Neural Network Analysis of Database  
on Carbon Coatings 

In addition to classical statistical methods, the re-
sults of which are presented in the previous section, 
we used machine learning algorithms to search for 
patterns in the experimental database and predict the 
hardness values of DLC coatings. A criterion for the 
presence of patterns was the value of the coefficient 
of determination R2. 

Let yi and fi (i = 1, ..., n) be the experimental and 
predicted values of the unknown function (hardness 
H), and m be the average value of all yi, then the va-
lue of R2 is determined as 

 
2

2
score 2

( )
1 .

( )
i i

i

y f
R

y m

 
 

 
 (5) 

The maximum value of R2
 = 1 corresponds to the 

best prediction quality. In practice, R2 can take zero 
or even negative values if the data is random noise or 
contains large outliers, as well as for a poorly trained 
or retrained model. 

The first step in constructing machine learning 
models is to collect data. In this study, a data set for 
analysis and training included the results of 58 expe-
riments on DLC coating deposition selected from the 
created database. The input parameters of the models 
were four experimental parameters: chamber pressure 
P, the amount of nitrogen supplied to the chamber 
%N, induction coil current λ, and coating deposition 
time t. The hardness H of the resulting carbon coat-
ing was chosen as the target parameter. The depen-
dence of hardness on experimental parameters was 
modeled using the linear Ridge algorithm (ridge re-
gression), the ExtraTrees algorithm, which proved to 
be good for low-dimensional tabular problems [14, 
37], and a fully connected multilayer perceptron 
(MLP) network. Ridge regression is a type of linear 
regression, also known as Tikhonov regularization. 
ExtraTrees refers to ensemble algorithms that use de-
cision trees as weak estimators. Due to the relatively 
small size of the original data set, it was decided to 
use LeaveOneOut cross-validation approach. Data 
were normalized before training models. 
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Fig. 7. Scatter plot showing correlations between the ex-
perimentally determined true hardness values and the va-
lues predicted by the algorithm during cross-validation: 
a––results for the Ridge regression algorithm, b––for the 
ExtraTrees ensemble algorithm, c—for the ExtraTrees 
ensemble algorithm after data filtering (color online). 

 
The predicted hardness value Нpred and the experi-

mental value Нorig are shown in Fig. 7 for each expe-
riment. Initially, the algorithms were trained on the 
original data without filtering (Fig. 7). The metric R2 
for unfiltered data was 0.117 for ExtraTrees and 
0.045 for Ridge. Both algorithms showed low predic-
tion quality, but most of the points in Fig. 7b are lo-
cated along the prediction–experiment line, while in 
Fig. 7a points are scattered randomly. Subsequently, 
the quality of the model was improved based on an 
ensemble of trees (ExtraTrees), which revealed a 
higher correlation in the original experimental data 
than the Ridge-based model. 

It is seen from Fig. 7b that the prediction quality 
for some experiments is significantly lower. The po-
ints with initial ordinal numbers in the database are 
the most distant from the prediction–experiment line, 

i.e., the least predictable hardness values are observ-
ed for coatings obtained at the initial stage of testing 
the modes of plasma-assisted DLC coating deposi-
tion. To improve the quality of prediction, we filtered 
out experiments for which the ExtraTrees algorithm 
showed the greatest error. The result obtained after 
data filtering is shown in Fig. 7c. After removing ele-
ven experiments with the largest error, the prediction 
quality increased significantly up to R2

 = 0.45. The 
Ridge model was not improved after filtering. The 
prediction quality of the ExtraTrees algorithm was 
also improved by selecting parameters such as the 
maximum tree depth and the total number of trees. 
The best metric R2

 = 0.5 was obtained by a model 
with a maximum tree depth of 5 and a total number 
of trees of 20. The input parameter space has a small 
dimension of 4 input parameters, which makes it pos-
sible to improve the quality of prediction by expand-
ing the feature space. As a result, the quality of pre-
diction was increased to R2

 = 0.56 by adding polyno-
mial features of degree not higher than two, i.e., 
squares and pairwise products of the original featu-
res. The addition of third-degree polynomial features 
did not lead to further improvement in quality. 

The same sequence of improvements as for trees 
was applied for a fully connected neural network. 
Initially, the neural network with one hidden layer of 
100 neurons, trained on unfiltered data, showed a 
prediction quality of R2

 < 0. Training the same net-
work on filtered data did not improve the prediction 
quality. Further, by selecting parameters, as well as 
the architecture of the neural network, we achieved a 
prediction quality of R2

 = 0 comparable to the quality 
of the tree-based model. The corresponding neural 
network architecture consisted of 2 consecutive hid-
den layers of 10 neurons each. The L2-regularization 
value during training was equal to 1. Expansion of 
the feature space did not lead to an increase in the 
prediction quality of the neural network; the maxi-
mum value of R2 remained equal to 0.5. 

Thus, data filtration, feature space expansion and 
optimization of the algorithm parameters significant-
ly improved the quality of model prediction from 
R2

 = 0.117 to 0.56 for ExtraTrees and from R2
 < 0 to 

0.5 for the neural network. As a result, we obtained 
models for the dependence of hardness H on experi-
mental parameters, which were used at the next stage 
of research to visualize the hardness dependences. 
The results of using the trained ExtraTrees algorithm 
and neural network to plot the coating hardness va-
riation as a function of pairs of parameters are pre-
sented in Fig. 8 in the form of heat color maps. The  
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Fig. 8. Two-parameter color maps of hardness plotted using a trained neural network (a, c, e) and a trained ExtraTrees algorithm 
(b, d, f). Parameter planes: a, b––%N–λ, c, d––P–λ, e, f—%N–t. The hardness color scale in GPa is shown on each map on the 
right (color online). 

 
prediction of the coating hardness was plotted near 
the experimental point with the maximum hardness 
value for all parameter values on the plane. Two-

parameter color maps of hardness were constructed 
for all possible pairs of input parameters: coil current 
λ, deposition time t, amount of nitrogen in the flux  
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Table 3. Optimal parameter values from two-dimensional color maps of DLC coatings (Fig. 8) 

Parameters WorkPress DeposTime Npercentage CoilCurrent 

Chamber pressure Р, Pa (WorkPress)  <0.02 <0.05 <0.08 

Sputtering time t, min (DeposTime) 10–17  10–17 10–17 

Nitrogen pressure %N (Npercentage) 5–7 5–7  5–7 

Induction coil current λ, A (CoilCurrent)  
2.7–3.1 

0–1.6 
2.7–3.1 

 
2.7–3.1 

 

 
%N, and operating pressure P. Color in Fig. 8 shows 
the expected value of coating hardness. 

In practice, in the technology of plasma-assisted 
DLC coating deposition, the ranges of permissible 
values of process parameters for obtaining optimal 
coating properties turn out to be quite narrow (see 
Figs. 5 and 6). Comparison of the experimental data 
from Sect. 3.2 with the numerical analysis data of this 
section shows more accurate prediction using the 
ExtraTrees algorithm. Areas of coinciding optimum 
experimental and predicted parameter values are 
marked by a rectangular frame in Fig. 8. When pre-
dicting with the MLP neural network, it was very 
problematic to construct such areas for the real va-
lues of some pairs of parameters (Figs. 8c and 8e). 
Data on the optimal input parameter values obtained 
with the ExtraTrees algorithm and providing the ma-
ximum level of coating hardness (Figs. 8b, 8d and 8f) 
are summarized in Table 3. The optimal values of 
each parameter are given in the rows of Table 3. The 
parameter value at the intersection of the row and co-
lumn in Table 3 corresponds to the two-dimensional 
color map in Fig. 8. 

It is interesting to compare the data in Fig. 5, 
which are summary results of one-parameter experi-
mental hardness curves from Sect. 3.2, and the data 
of Table 3, which are summary results of predicted 
two-parameter dependences from Sect. 3.3. Compari-
son of these data obtained using different statistical 
and IT methods shows that the ranges of optimal va-
lues of the varied parameters %N, P and λ have a 
high degree of overlap. Moreover, they are almost 
identical for the data obtained with the ExtraTrees al-
gorithm. The coincidence of the results obtained by 
different methods of analyzing the DLC coating data-
base indicates that plasma-assisted deposition tech-
nology can be considered as a controlled process, 
despite its multiparameter, nonequilibrium and sto-
chastic nature. 

4. CONCLUSIONS 

The use of nitrogen instead of hydrogen for car-
bon coating stabilization provides stable thickness 
values of DLC coatings at the level of 0.6–1.4 µm. It 
also serves as an important process control parameter 
for adjusting the physical and mechanical character-
istics of the deposited coating. 

This study showed the possibility to optimize a set 
of variable DLC coating deposition parameters 
(chamber pressure P, induction coil current λ, the 
amount of nitrogen supplied to the chamber %N, de-
position time t) in order to enhance the physical and 
mechanical properties of the coating, such as hard-
ness H and elastic modulus E. The highest accuracy 
in predicting the carbon coating hardness was achiev-
ed through bimodal variation of the parameters %N 
and λ; their optimization using various algorithms 
(e.g., neural network machine learning and Extra-
Trees) gave almost identical localization on the para-
meter plane (Figs. 8a and 8b). It is important that 
these parameters are independent as they have differ-
ent physical effects on the coating properties: %N 
stabilizes the coating structure by reducing internal 
stresses, and the value of λ determines the flux den-
sity of deposited carbon ions. Bimodal variation of 
other considered parameters did not yield satisfactory 
optimization results, which were contradictory de-
pending on the algorithms used (Figs. 8e and 8f). 

A methodological approach was tested which in-
cluded the creation of a database of carbon coatings, 
identification of relationships between deposition pa-
rameters and coating properties using statistical data 
processing, and optimization of the obtained depend-
ences using machine learning algorithms. This ap-
proach was shown to solve the problem of stochastic 
distribution and significant scatter of data caused by 
the features of an unstable nonequilibrium ion plas-
ma system and a large number of parameters that de-
termine the composition, structure and properties of 
coatings. As a result, it becomes possible to reliably  
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predict the coating properties by varying a limited 
number of process control parameters. 

The study showed that despite the large number of 
parameters, among which there are stochastic para-
meters, the technology of plasma-assisted physical 
vapor deposition can be a reliably controlled process. 
The generated experimental database of DLC coat-
ings allowed us to identify the most significant para-
meters and determine their effects on the coating pro-
perties. The use of machine learning and neural net-
work algorithms expanded the possibilities of using 
these effects in the form of two-dimensional color 
maps. The results obtained showed no contradictions 
when using classical statistical methods and new 
computer technologies, with the exception of a signi-
ficant gain in data processing time provided by the 
latter. Research prospects in the fields of plasma-as-
sisted PVD technologies and unstable nonequilibri-
um processes with growing database size involve the 
increasing use of machine learning and neural net-
works for its analysis instead of conventional statisti-
cal processing methods. 
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