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Abstract—A cell for conducting operando measurements of X-ray absorption spectra for gas-sensitive sensors
based on ZIF-8/ZIF-67 nanofilms is developed and fabricated. The cell is made of stainless steel, which
makes it possible to study, among other things, corrosive gases. The possibility of heating and continuous
measurement of the sensor temperature during an operando experiment to evaluate the dynamics of sorption
in the processes of heating/cooling the cell. The isolated sensor holder has contacts for measuring the capac-
itance/resistance of the sensor. To measure X-ray absorption spectra for gas-sensitive gas-sensor materials,
an X-ray transparent window is provided. For sensors based on ZIF-8 and ZIF-67 nanofilms, the X-ray
absorption spectra are measured for the K edges of Zn and Co, respectively. It is found that after exposure to
NO2 in a gas-sensitive material based on ZIF-8/ZIF-67 nanofilms, long-range order is lost and the film
undergoes amorphization. The X-ray absorption spectra measured for a gas-sensitive material based on ZIF-
8/ZIF-67 nanofilms before and after exposure to NO2 indicate a change in the local atomic and electronic
structures near cobalt atoms.
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INTRODUCTION
Gas sensors are key components of household

items that improve quality of life [1, 2]. They are
designed to detect and quantify the presence of various
gases in the environment, the household, and during
technological processes [3–5]. Their importance in
the modern world cannot be overestimated, since they
perform a signaling function, providing information
about unwanted or dangerous leaks of toxic and explo-
sive gases. Thus, semiconductor gas sensors are capa-
ble of detecting f lammable gases in the air, such as
hydrogen [6], methane [7], and other liquefied hydro-
carbon gases [7]. Air humidity sensors are indispens-
able in the food industry [8], and oxygen detection is
important, for example, for monitoring automobile
exhaust emissions [9], as well as in various metallurgi-
cal processes [10]. One of the most serious environ-
mental problems caused by the growing technogenic
influence of humans on nature is the release of toxic
gases into the atmosphere: oxides of nitrogen, sulfur
and carbon, which actively destroy the ozone layer
[11]. Interacting with atmospheric moisture, nitrogen
and sulfur oxides form acid rain, causing the corrosion
of metal structures and changes in the acidity of soil
and water bodies [12, 13]. All these factors harm agri-
culture and fisheries [14, 15]. Thus, the development

of sensors for the determination of NOx, SOx, and CO
is a pressing issue [16, 17].

A gas sensor must have two main functions: a
receptor function (recognition of a specific gas) and a
transducer function (conversion of the signal from the
gas-receptor interaction into a sensory signal, for
example, electrical signal) [18–20]. The most wide-
spread are solid-state gas sensors in which the gas–
receptor interaction is reduced to physisorp-
tion/chemisorption or electrochemical reaction [21].
Thus, it is convenient to convert the interaction of a
gas with semiconductor oxides into a change in the
electrical resistance of the converter, and the interac-
tion of a gas with dielectrics into a change in the
capacitance of the converter [22].

Nanomaterials such as nanowires [23], nanoparti-
cles [24, 25], nanotubes [26], and nanofilms [27] can
also be used in the development of sensors. Their
functionalization can significantly increase sensitivity
and selectivity [28–30]. The advantage of nanofilms is
their uniform application on the sensor surface. One of
the promising classes of new materials for creating
sensors are metal-organic frameworks (MOF) [31–
34]. These materials consist of metal ions or metal
clusters interconnected into a three-dimensional
porous framework using bridging organic molecules,
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i.e., linkers [35]. In this case, the pore size and specific
surface area can be varied by changing the type of
linker. Thanks to this modular structure, it becomes
possible to finely regulate the selectivity of the material
to certain molecules, and a high porosity increases the
efficiency of interaction of the material with a gas [36].
ZIF-8 is an organometallic analogue of natural frame-
work aluminosilicates, i.e., zeolites [37]. However,
unlike their natural counterparts, the ZIF-8 family of
MOFs are constructed from zinc ions coordinated by
the nitrogen atoms of 2-methylimidazole. The result
is a frame with a high specific surface area of up to
2000 m2/g, and relative thermal and chemical stabil-
ity [38]. The isomorphic substitution of zinc with
divalent cobalt leads to the formation of a similar
structure due to the proximity of the ionic radii of
Zn(II) and Co(II) [39].

Understanding how gases interact with ZIF is of
paramount importance to optimize sensor perfor-
mance under various operating conditions, increasing
its sensitivity, selectivity, and durability [40, 41]. X-ray
absorption spectroscopy (XAS) is an effective method
for studying the local atomic and electronic structure
with elemental selectivity. Using XAS, it is possible to
study nanofilms under the influence of gas f lows and
evaluate changes in the local environment and the oxi-
dation state of metal atoms that make up the MOF
[42]. However, conducting research under technolog-
ical conditions (operando) requires specialized mea-
suring cells and access to synchrotron-radiation
sources. In particular, the tightness of the measuring
cell and the possibility of supplying a gas mixture.
Sorption processes greatly depend on temperature
[43], so it is necessary to ensure the possibility of heat-
ing and continuous measurement of the sensor tem-
perature during operando experiment to evaluate the
dynamics of sorption in the processes of heating/cool-
ing the cell. In addition, the cell must have contacts for
measuring the capacitance/resistance of the sensor.
To measure the X-ray absorption spectra for gas-sen-
sitive gas-sensor materials, it is necessary to provide a
window transparent to X-rays.

The purpose of this work is to create a cell for mea-
suring the X-ray absorption spectra in operando. Gas
sensors based on ZIF-8/ZIF-67 nanofilms are chosen
as the test samples.

MANUFACTURING 
A GAS-SENSITIVE SENSOR

Contact tracks on glass were fabricated according
to a previously described protocol [44, 45]. Using
magnetron sputtering, a three-layer structure was
formed based on Cr (15 nm)/Cu (100 nm)/Cr (15 nm)
metal films. The topology of the electrodes was cre-
ated by photolithography using an MJB4 exposure
setup (SUSS, Switzerland). The photomask design
was developed based on an interdigitated array (IDA)
electrode structure. The width of the electrodes was
NANOB
equal to the gap between them and amounted to
200 μm. The size of the gaskets for connecting the
measuring equipment was 2.5 mm2. The multilayer
film structure was etched with HCl-based solutions:
HCl : H2O (1 : 1) for Cr and H3PO4 : HNO3 :
CH3COOH : H2O (45 : 2 : 9 : 3) for Cu.

A layer of gas-sensitive material based on ZIF-
8/ZIF-67 was applied to the contact tracks in accor-
dance with the procedure described in [46]. To clean
the surface of the chip, it was immersed in hexane and
sonicated for 10 min. The chip was then air dried,
washed with acetone, and dried again. After this, the
chip was immersed for 30 min in a solution prepared
by mixing 10 mL of a 25-mmol solution of zinc nitrate
(for ZIF-8) or divalent cobalt (for ZIF-67) in metha-
nol and 10 mL of a 50-mmol solution of 2-methylim-
idazole in methanol. Next, the chip was removed from
the solution and washed with pure methanol.

DEVELOPMENT OF OPERANDO CELLS
A CAD model of the gas cell was designed using a

computer-aided design system and is available for
download. The cell body and covers (Fig. 1a) are made
of AISI-304 steel. The cell body is a single piece with
dimensions of 60 × 60 mm and a thickness of 15 mm.
In the center of the piece there is a hole in the form of
a superellipse; a chip with a gas-sensitive coating is
placed in this area on a holder made of F4 f luoroplas-
tic. Tubes for supplying and discharging gases are also
connected to this area. Another hole in the top of the
main piece is made to connect the contacts to a gas
sensor to measure changes in the resistance between
the contacts of the chip. The reaction zone was her-
metically sealed on both sides with tight lids with win-
dows made of a material transparent to X-ray radiation
(Kapton). Two heating elements are inserted into the
body of the cell.

Figure 1b shows a diagram for measuring the X-ray
absorption spectra during gas injection into a gas cell.
The experimental gas cell was tested at the structural-
materials research station of the Kurchatov synchrotron
radiation source (electron-beam energy of 2.5 GeV,
storage-ring current in the range of 50–120 mA).
A double-crystal Si (220) monochromator was used to
extract the energy of incident photons. The measure-
ments were carried out in the f luorescence-output-
detection mode.

Before measurements, the cell was filled with CO
and heated to 180°C. Figure 2 shows the X-ray absorp-
tion spectrum for the K-edge of cobalt measured using
the developed gas cell for a gas-sensitive material
based on ZIF-8/ZIF-67 nanofilms.

To record changes in the local atomic and elec-
tronic structure of the sensor material, we studied the
sample’s reaction to NO2 of various concentrations
(Fig. 3a) at a temperature of 180°C. Using an Agilent
E4980A impedance meter, changes in the electrical
IOTECHNOLOGY REPORTS  Vol. 19  No. 2  2024
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Fig. 1. Diagram of a gas cell for measuring the X-ray absorption spectra for gas-sensitive materials in operando (a); experimental
scheme (b).
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Fig. 2. Total spectrum for K absorption edge of cobalt recorded in the developed gas cell.
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Fig. 3. Sensor response to the supply of NO2 of various concentrations.
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characteristics of the gas-sensitive film were studied.
The measurement was carried out at a frequency of
100 Hz and a voltage of 1 V. As a result of processing
NANOBIOTECHNOLOGY REPORTS  Vol. 19  No. 2 
the data obtained (Fig. 3), the values of the capacitive
and resistive sensitivity of the sample to various con-
centrations of NO2 are summarized in Table 1.
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Table 1. Resistive (SR) and capacitive (SC) sensor sensitivity
to NO2 of different concentrations

NO2 
concentration, 

ppm

Sensitivity, %

SR SC

25 0.001
45 3.87674 6.52156
85 14.28571 14.65482

170 15.30398 17.60784
275 19.17373 20.00164
From Table 1 it can be seen that with increasing
concentration of NO2 from 45 to 275 ppm the signal SR
and SC increases from 3 to 19 and from 6 to 20%,
respectively. At the same time, the strong nonlinearity
in the change in the capacitance and resistance, when
NO2 is supplied at a concentration of 25 ppm, did not
allow us to evaluate the sensor response at the given
gas concentration. Also, when a gas concentration of
85 ppm was supplied, transient processes were
observed when the capacitive and resistive signals
changed, which may be due to changes in the structure
of the film itself.

STABILITY OF THE STRUCTURE
OF THE GAS-SENSITIVE MATERIAL 

AFTER NO2 TREATMENT

The color of the sensor material after interaction
with NO2 changed to brown. Analysis of the diffrac-
tion patterns before and after NO2 treatment showed
disruption of the crystallinity of the ZIF-8/ZIF-67
nanofilms. Before sample processing, the diffraction
pattern clearly shows peaks corresponding to the ZIF-
NANOB

Fig. 4. X-ray diffraction profiles of samples S2 before (1) and aft
chips after exposure to NO2 compared to the original coating fo
(3) crystalline ZIF-67 (b).
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8/ZIF-67 structures (7°, 10°, 13°, 15°), however after
treatment with NO2 the diffraction pattern exhibited
only a broad peak of amorphous silica and peaks cor-
responding to metallic copper from the contact tracks
(Fig. 4a). Whereas the chip continues to work as a sen-
sor after repeated NO2 processing, it can be assumed
that the ZIF-8/ZIF-67 phase has become amorphous,
losing long-range order.

Sample S2 is a chip coated with three layers of ZIF-8
and three layers of ZIF-67. Figure 4b shows the X-ray
absorption spectra measured for crystalline ZIF-67,
ZIF-67 deposited onto the contact tracks in the form
of a nanofilm, and ZIF-67 deposited onto the contact
tracks in the form of a nanofilm after exposure to NO2.
It can be seen that the intensity of the pre-edge feature
at an energy of ~7705 eV and the shape of the main
maximum at an energy of 7730 eV for crystalline ZIF-
67 and ZIF-67 deposited onto the contact tracks in the
form of a nanofilm practically coincide, which may
indicate identical local atomic and electronic struc-
tures. However, after exposure to NO2 the pre-edge
feature disappears and the intensity of the main maxi-
mum increases, which indicates a change in the local
environment of cobalt atoms.

It is known that even at room temperature NO2 can
exhibit oxidative functions and therefore become an
electron acceptor. When NO2 comes into contact with
ZIF-8 and ZIF-67 films, electrons are lost, as a result,
the number of holes in the MOF film increases,
which, together with the high activity of NO2 leads to
a decrease in the resistance [41]. On the other hand, it
is known that the cobalt(II) ion has a 3d7 electronic
level containing a free orbital. As a result, it becomes
possible for electrons to migrate inside the d sublevel.
In a zinc ion, the outer electron layer has the electron
configuration 3d10, which means there is no vacant d
IOTECHNOLOGY REPORTS  Vol. 19  No. 2  2024
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orbitals. As a result, when moving from zinc to cobalt,
the electrical conductivity increases.

The functionalization of ZIF-8 with layers of ZIF-
67 results in increased sensitivity and magnitude of the
sensor response. This may be due to a decrease in the
activation energy due to an increase in temperature to
180°C, resulting in an increase in the efficiency of
electron transfer of NO2 donor impurities, which
ensures a high conductivity of the sensitive layer.
At the same time, ZIF-67 layers contribute to an
increase in impedance due to the formation of addi-
tional capacitances, which affects the overall resis-
tance of the structure and its response when gases are
supplied. Moreover, a gas with the same concentration
causes different levels of capacitive and resistive
response of the sensor.

CONCLUSIONS
A cell has been developed for measuring the X-ray

absorption spectra for gas-sensitive materials in
operando. The cell allows heating of the gas sensor, the
creation of an atmosphere of various gases, and mea-
surement of the resistance and capacitance of the gas
sensor. The X-ray absorption spectra were recorded
for the K edge of cobalt and zinc using the developed
gas cell for a gas-sensitive material based on ZIF-
8/ZIF-67 nanofilms. Based on the analysis of X-ray
diffraction data, it was established that after exposure
to NO2 in the MOF structure, long-range order is lost
and amorphization of the film occurs, while the sensor
retains its functionality and its sensitivity to NO2. The
X-ray absorption spectra measured for a gas-sensitive
material based on ZIF-8/ZIF-67 nanofilms before
and after exposure to NO2, indicate a change in the
local atomic and electronic structures near the cobalt
atoms.
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