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Microfluidic synthesis of calcium tungstate CaWO4
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Abstract. Nowadays, microfluidic synthesis has many advantages over bulk synthesis. By controlling the

flow into the microfluidic chip, we can synthesize nanoparticles with defined and precise characteristics. A

continuous microfluidics synthesis of CaWO4 was conducted to obtain nanoparticles with a Scheelite

structure approximately 10 nm in diameter. The CaWO4 nanoparticles were characterized using elemental

composition, chemical structure, particle size distribution, and morphology. Calcium tungstate and its

derivatives are well known for their optical properties and have great potential for medical applications. The

small diameter of nanoparticles allows the synthesis of composites on their basic for theranostics in cancer

treatment. Our work indicates the potential opportunity of a continuous microfluidics technique for the rapid

fabrication of Scheelite-type tungstate.
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1. Introduction

CaWO4 with a Scheelite structure has attracted a lot of

attention from researchers because of its luminescent

properties.1–5 This material and its derivatives can be

used in photocatalysis,6–9 as hosts for lanthanide-ac-

tivated lasers,10–13 and as a luminophore.14–18 It is also

important as a scintillation material for detecting

X-rays and gamma rays for medical purposes.19–23

The composition, size, and morphology of the sample

control all these properties. These characteristics can

be controlled by synthesis.

The literature has described many methods to syn-

thesize tungstate with a scheelite structure, such as

solid-state synthesis,14,24,25 co-precipitation

method,26–28 sol-gel synthesis,29 microwave synthe-

sis,30–33 hydrothermal synthesis,34 and sonochemical

synthesis.35 The feature of all these methods is that

they are carried out in a volumetric reaction medium

and flow for a long time. One of the fastest processes

is microwave synthesis, which takes 10 min.30

Microfluidic synthesis can make the process faster by

using a few reagents in a microfluidic chip.36–38 The

advantage of microfluidic synthesis is also the possi-

bility of their implementation under the control of

artificial intelligence with the ability to control in situ

reaction products and change conditions to obtain a

material with specified parameters.39,40

The microfluidic synthesis of zinc tungstate has

been described in the literature,41 but with subsequent

treatment under hydrothermal conditions. In our work,

we studied the possibility of exclusively obtaining

calcium tungstate in microfluidic synthesis without

additional processing and investigated its morphology.

2. Experimental

The starting materials for the synthesis were sodium

tungstate (Na2WO4�2H2O), calcium chloride (CaCl2 �
2H2O) and trisodium citrate. All reagents were obtained

from Sigma-Aldrich, were of analytical quality, and

were used without further purification. As the first step,

we prepared two solutions: 0.3 M of Na2WO4 aqueous

solution and 0.3 M of CaCl2 aqueous solution (by

adding trisodium citrate solution as a complex agent).

Each solution was mixed separately on a magnetic

stirrer until a clear solution was obtained.

The CaWO4 suspension was obtained under

microfluidic conditions using a precision dosing
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system. It consists of a series of syringe pumps and

taps connected by a system of perfluoroalkoxide (PFA)

tubes (see Figure 1). The crane has three ports for

connecting tubes and can change the direction of flow

from C–NC to C–NO (C – common port, NC – nor-

mally closed port, NO – normally open port). At the

time of loading the reagents, port NO is closed, and the

required reagent is taken from port NC, which, under

low pressure, flows into the syringe through port C.

After the download is completed, the NC port is

blocked, and NO is opened. Thus, the syringe pumps

can replenish themselves without the operator’s

attention to ensure long-term synthesis.

During the synthesis, aqueous solutions of Na2WO4

and CaCl2 at a concentration of 0.3 M were used. They

were filled into syringes, after which they were

pumped to the mixing site. To ensure constant mixing,

a 10-m tube was connected after the Y-connector,

along which the Na2WO4 solution passed at a speed of

0.3 ml/min and the CaCl2 solution passed at a speed of

1.2 ml/min. The resulting suspension was collected in

a separate container for post-processing (centrifuga-

tion, washing, drying).

The X-ray diffraction (XRD) of the synthesized

nanoparticles was measured by the D2 PHASER using

Cu Ka radiation (k = 1.5406 Å) at 30 kV and 10 mA.

For the measurements, we used a low-background

cuvette and the following conditions: 2h range from

10� to 60�, step size –0.01�.
The shape and size of the synthesized nanoparticles

were investigated using a Tecnai G2 Spirit TWIN

microscope.

Qualitative and quantitative elemental analysis of

the synthesized nanoparticles was performed using an

M4 Tornado X-ray fluorescence spectrometer. The

data were collected at 20–25 points on each sample

surface for 10 s.

Measurements of IR spectra were carried out on a

Bruker Vertex 70 spectrometer in the ATR geometry

(attenuated total reflectance) using a DTGS detector

and a Bruker Platinum ATR prefix. The spectra were

measured in the range from 4000 to 30 cm–1 with a

resolution of 1 cm–1 and 64 scans. The reference

sample was air.

3. Results and discussion

The results of the XRD analysis (Figure 2) show that

the sample obtained in the microfluidic synthesis is

single-phase with a scheelite-type structure (JCPDS

41-1431).

To obtain information about particle size and size

distribution from the diffraction pattern we use the

FW1/5M-FW4/5M method.42 In this method, we can

calculate the average grain size hRi, and also draw a

grain size distribution (GSD) curve that is much more

informative than a single medium hRi parameter.

Direct calculation of the average particle size and

dispersion was performed using the formulas from the

work.42 The calculated average particle size and size

dispersion are presented in Table 1.

The actual elemental composition percentage and

the molar ratio of Ca2? and W6? in each sample were

calculated and were obtained n(Ca) : n(W) = 0.91 :

1.00. The derivation of calcium-ion content from sto-

ichiometry may be related to the construction of

microfluidic systems and the synthesis conditions.43,44

The purity of the final products was monitored by

FT-IR spectroscopy (Figure 3). The WO4
2– tetrahe-

drons in Scheelite-structured tungstate show absorp-

tion bands in the region of 400–1000 cm–1. The weak

bands at 3425.2 and 1615.3 cm–1 are assigned to the

O–H stretching vibration and the H–O–H bending

vibration, respectively. These two bands are the

characteristic vibrations of water that correspond to

the physical absorption on the sample surface. A

strong absorption band at 822.4 cm–1 is related to O–

W–O stretches of the WO4
2– tetrahedron, and that at

Figure 1. Illustration of the continuous synthesis of
CaWO4 nanoparticles.

Figure 2. X-ray diffraction pattern of CaWO4

nanoparticles
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438.7 cm–1 is attributed to the stretching vibration of

W–O.45

The shape and size of the nanoparticles were studied

by transmission electron microscopy. As seen from the

TEM images and analysis in Figure 4, most of the

CaWO4 samples are spherical particles. The size dis-

tribution of nanoparticles was estimated using the

ImageJ program and TEM images.46,47 The average

size of the nanoparticles is approximately 9 nm, but

they tend to agglomerate. This size is much smaller

than the particles obtained even in the ultrasonic

synthesis method, the size of which is approximately

20 nm.48

The sizes of the synthesized samples are appropriate

for further coating with SiO2 because of their small

size. Such nanoparticles overcome biological barri-

ers.49 Small capillaries have a diameter of approxi-

mately 3 lm, and nanoparticles with a size of less than

200 nm can be freely transported through the circu-

latory system to a certain place and carry pharma-

ceutically active substances.

Microfluidic synthesis differs in that the mixing of

reagents and the reaction itself occurs in a flow of open

channels with a special pattern.37,50 These flows are

laminar, directional, and highly symmetric compared

with flask synthesis.36 The channel size and location

reduce the distance required for the diffusion of the

interacting particles and increase the reaction rate. The

microfluidic chip also allows the control of the stages

of nucleation and growth of nanoparticles, depending

on the shape of channels in the chip, mixing speed, and

so on.38 This leads to the possibility of accurate

repeating of particle sizes and their morphology during

the synthesis.

Thus, synthesis using microfluidic technologies

makes it possible to obtain tungstate with a size of less

than 10 nm, with a narrow size distribution of spher-

ical shape. We controlled the particle’s size by both

the channel size and the mixing rate of reagents into

the microfluidic chip. The next part of this work is to

study the dependence of particle size and optical

properties on the ratio of flow rates in the synthesis.

Table 1. The results of processing diffraction pattern by the FW1/5M-FW4/5M method for CaWO4.

Sample Size average, hRi (nm) Size dispersion, r (nm) Relative width, r/hRi

CaWO4 by microfluidic synthesis 13.4 4.4 0.33

Figure 3. FTIR spectra of CaWO4 nanoparticles.

Figure 4. Left: TEM images of the CaWO4 nanoparticles; Right: particle size distribution of CaWO4.
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4. Conclusion

In this work, we obtained calcium tungstate with a

scheelite structure without additional temperature

treatment, which is widely used in various fields of

medicine, energy, and materials science, using rapid

microfluidic synthesis. The proposed method using an

automatic control system with AI allows not only to

obtain specified sizes of materials in the range of 6–8

nm with a narrow size distribution but also to control

synthesis. Currently, work is underway to create a

model for controlling the synthesis and parameters of

the obtained materials based on operando analysis.

Further work is needed to study the influence of

channel sizes (radius and length), their material, and

shape on the morphology of the obtained materials, the

reaction yield, and the tendency of the system to clog.

The improvement of microfluidic systems and their

combination with artificial intelligence will allow not

only the reproducible synthesis of a large family of

complex oxides but also point-by-point control of their

properties for specific applied research.
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