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A B S T R A C T

Graphene and its derivatives have become essential materials in modern biomedical research due to their pos-
itive impact on various applications. Moreover, the integration of graphene-based materials with microfluidics
technology has opened up new possibilities. The novelty of the current review is considering comprehensive
analysis of the transformative impact of graphene and its derivatives in biomedical applications, particularly
highlighting the integration with microfluidics technology. While many studies have focused on individual ap-
plications of graphene, this review uniquely present a holistic view of its potential across various biomedical
fields, including drug delivery, gene delivery, tissue engineering, and photothermal treatment, detection, sensor
with respect to conventional and microfluidics techniques. In this review, we analysed published research to
unveil the increasing interest in graphene’s potential applications in healthcare and medicine, as well as its
prospects for further exploration. We explore the fundamental concepts of graphene, its properties, and its latest
applications in medical implants and biological fields within the context of microfluidics and conventional
prospects. The review also addresses the challenges and limitations of these materials and their promising future,
recognizing that graphene research is still in its early stages compared to commercial applications.

1. Introduction

Graphene has been widely applied materials with vast application in
field of materials science and engineering specially biomedical industry
due to their extraordinary physicochemical and mechanical properties
including large surface area [1]. It is recognized as the strongest material
from a mechanical standpoint, in addition chemical stability shows
mechanical compatibility, cell adhesion and low toxicity properties for
applications in scaffold production, sensing and drug delivery [2–4].
Drugs can be made more stable, soluble, and bioavailable with the help
of graphene-based drug delivery systems, which can improve thera-
peutic results [5–7]. Since graphene has unique qualities that make it a
great contender to replace existing devices focused on medical appli-
cations [8–10]. The recent advance of novel research in graphene-based
composition materials used in biomedical applications due to rising
demand for the production of artificial hard tissue for organ implants

where the biomaterials sector needs $2.3 billion a year [11].
Besides, microfluidics is a branch of science and technology that

deals with manipulating and controlling small volumes of fluids, typi-
cally in the microliter to picoliter range, within microchannels and
microscale devices [12]. When graphene is incorporated into micro-
fluidics, it introduces several advantages and applications due to its
unique properties. Graphene-based microfluidics is an emerging inter-
disciplinary field that combines the unique properties of graphene with
the precision and control of microfluidic systems [13]. This integration
offers numerous opportunities for various applications in science, en-
gineering, and biotechnology (see Scheme 1). Graphene-based micro-
fluidics is an exciting and evolving field with applications ranging from
healthcare to energy and beyond [14]. Several current works demon-
strate the versatility and promise of graphene in microfluidic systems for
a wide array of scientific and technological advancements.

In recent years, the field of graphene research has experienced a
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substantial and rapid expansion. This rising interest is proved by Fig. 1,
which presents empirical data sourced from Scopus publications per-
taining to graphene and graphene nanomaterials of scientific research.
Fig. 1 not only clarifies the extensive research activities within this
domain but also explains the applicability of graphene in diverse ap-
plications. In the following sections of this review article, we attempt to
provide an up-to-date and scientifically grounded overview of graphene
materials, with a specific focus on their engineering applications.

Here, our objective is to consolidate the existing body of knowledge
and gather insights into potential future applications by synthesizing
information from past research and incorporating the latest advance-
ments in technology. Specifically, the focus of this review is to system-
atically organize a diverse array of research findings encompassing prior
work related to graphene-based materials and their modern integration
with microfluidic technology. It is noteworthy that a substantial portion
of previously published research articles has predominantly concen-
trated on various methodologies for the synthesis of graphene and its
conventional applications. Hence, this review serves as an educational
resource, for not only experts in the field but also to newcomers seeking
to learn the graphene research, which encompasses both microfluidics
and traditional technology.

Over the past two decades, numerous reviews and progress reports
have extensively covered topics related to graphene-based materials for
biomedical applications. However, there remains a lack of a compre-
hensive review that integrates both conventional and microfluidics
techniques. This review article addresses this gap by offering several
novel contributions compared to previously published reviews along
wish comprehensive analysis of graphene-based materials that can be
applied across various biomedical fields. Unlike many existing reviews
that focus exclusively on either conventional biomedical applications or
microfluidics, this review integrates both aspects. It goes beyond dis-
cussing the potential of graphene-based materials and provides deeper
insights into the current challenges and limitations in their application.
Strategies for overcoming these challenges are discussed, such as
enhancing biocompatibility, improving scalability, and ensuring

stability within microfluidic environments. Additionally, it discusses
areas where further investigation is needed, such as understanding long-
term biocompatibility, optimizing fabrication techniques, and
improving the specificity of biosensors. Furthermore, the review out-
lines future research directions that could potentially advance the field,
including the development of novel graphene composites and the inte-
gration of advanced sensing technologies with microfluidics.

2. Synthesis of graphene

Graphene is a two-dimensional allotrope of carbon consisting of
planar sheets with carbon atoms arranged in sp2 hybridized configura-
tion. The unique properties exhibited by graphene arise from the
different arrangements of carbon atoms, leading to the development of
various modern approaches for its synthesis, commonly referred to as
graphene extraction [15]. In 2004, graphene was discovered through
the Scotch tape method, and subsequent breakthroughs enabled its
production in different forms using innovative approaches [16]. Two
primary methods, top-down and bottom-up synthesis, are widely
employed to grow graphene according to specific requirements such as
layer number, thickness, nature, and size. Based on these two funda-
mental mechanisms, various techniques have been introduced for gra-
phene synthesis are describe below.

2.1. Mechanical exfoliation

The exfoliation of graphite into graphene represents a cost-effective
method for graphene production [17]. The growth of graphene in flake
form and the subsequent recognition with the Nobel Prize in Physics in
2010 can be attributed to the micromechanical cleavage of highly or-
dered pyrolytic graphite [18]. Generally, the graphene layers are
sequentially peeled away from the bulk graphite, overcoming the
resistance from van der Waals interactions between adjacent layers. A
schematic representation of this technique is depicted in Fig. 2a [19],
where graphene layers are cleaved from the surface of the bulk highly

Scheme 1. Schematic presentation of the use of graphene-based materials for biomedical applications considering the conventional and microfluidics technology.

M.A. Islam et al.
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ordered pyrolytic graphite. This method is crucial for obtaining gra-
phene flakes with a larger surface area and enhanced efficiency. How-
ever, this process is time-consuming and limited to small-scale
laboratory research. Several agents also can help perform this technique
as electric field [20–22], epoxy resin and printing technique [23].

2.2. Electrochemical exfoliation

Graphene offers a promising alternative to conventional mechanical/
oxidation-based approaches that have been investigated for the efficient
and large-scale synthesis of graphene from its precursor, graphite
[24–26]. Through the application of an electric potential, ionic species

present in an electrolyte solution are driven to intercalate into the
graphite electrode, causing an expansion of the interlayer spacing [25].
For instance, in the case of using ammonium sulfate as the electrolyte,
sulfate ions and water molecules travel to graphite region, leading to the
localized generation of gas bubbles comprising species like SO2 and O2
(Fig. 2b) [26]. This electrochemical process enables the successful
delamination and exfoliation of graphene layers, producing high-quality
graphene nanosheets suitable for various applications. This process ex-
erts a separating force on neighboring graphene sheets, facilitating their
delamination.

Fig. 1. Scopus Published data analysis of graphene and graphene based biomedical sector.

Fig. 2. (a) Graphical presentation of the process of graphene layer extraction from bulk graphite using adhesive tape (b) Mechanical exfoliation methods for
graphene production based on normal and shear forces. Reprinted with permission, copyright, 2020, Elsevier [19] (c) Illustration depicting the mechanism of
electrochemical exfoliation. Reprinted with permission, copyright, 2014, American Chemical Society [26].

M.A. Islam et al.
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2.3. Chemical vapor deposition (CVD)

The evolution of graphene layers on metallic substrates using CVD is
predominantly governed by the solubility of carbon on the specific used
metallic surfaces [27–29]. Recent studies have further explored into the
influence of metallic substrates on the CVD growth of graphene,
exploring various aspects of the process. For instance, the growth of
large-area single-layer graphene on nickel substrates through CVD sheds
light on the nickel substrate’s impact on the nucleation and growing
dynamics of the graphene layers [31]. Similarly, the use of platinum
substrates in the CVD growth of graphene films elucidates platinum’s
effects on the nucleation and grain size of graphene [32].

In modern laboratory, alternative methods are using for graphene
synthesis. These methods including ball-milling exfoliation, sol-
vothermal synthesis, thermal decomposition of SiC and high-
temperature annealing of carbon-containing materials. These tech-
niques are very much useful to produce graphene with controlled
characteristics and desired properties.

3. Characteristics of graphene

Graphene has attracted significant consideration for their excellent
properties and applications in several fields along with medical appli-
cations [30,31]. From the discovery of graphene, it has been a building
block for developing novel carbon-based materials [32]. Graphene has
fascinating characteristics, including atomic structure, electronic and
thermal conductivity, mechanical strength and unique physical prop-
erties (Fig. 3). Due to the high surface area and interesting optical
properties, graphene is useful to enhance the contrast in various imaging
technology, such as MRI and fluorescence imaging, enabling more ac-
curate and sensitive detection of diseases [33]. It has large
surface-volume ratio that allows for efficient loading and precise release
of therapeutic agents, while their exceptional mechanical strength
confirms stability during transport and delivery.

However, graphene is a potential material in tissue engineering and
regenerative medicine [34]. The biocompatibility and the ability of their
composites support cellular growth and differentiation that make them
an ideal scaffold material for promoting tissue regeneration.
Graphene-based scaffolds also can mimic the extracellular matrix,
facilitating cell adhesion, proliferation, and tissue growth, thus offering
new opportunities for repairing damaged tissues and organs. On the
other hand, the antimicrobial properties of graphene have opened a new

way against drug-resistant bacteria [35]. Graphene-based materials also
have antibacterial activity against various pathogens, including
multidrug-resistant strains. The ability to disrupt bacterial cell mem-
branes and inhibit bacterial growth makes graphene a promising
candidate for developing new antimicrobial agents and coatings for
medical devices, reducing the risk of infections.

4. Graphene based microfluidics in biomedical industries

Graphene and graphene-derived materials have garnered significant
attention for their potential biomedical applications. The antimicrobial
properties exhibited by graphene make it a promising candidate for
various medical fields necessitating the use of antiseptics. However, it is
crucial to note that the safe concentration thresholds of graphene for
human cells have not been definitively determined. The inherent ca-
pacity to functionalize the fundamental lattice structure of graphene
enables scientists to fabricate sensors based on graphene that are
capable of detecting biochemical molecules. Similarly, the synergistic
integration of graphene and microfluidics amplifies their individual
advantages, leading to enhanced and more valuable applications.
Numerous recent reports and advancements pertaining to this subject
are presented below, accompanied by detailed information.

4.1. Microfluidics virus and disease detection

Microfluidics has emerged as a prominent research area within the
fields of analytical chemistry and bioscience. Graphene-based micro-
fluidic chips have exhibited a diverse range of significant applications.
The integration of graphene membranes with microfluidics holds the
potential to facilitate advancements in both domains. Numerous studies
have been conducted utilizing microfluidics techniques for the detection
of viruses and diseases. One such investigation focused on the electro-
chemical detection of norovirus using a polydimethylsiloxane micro-
fluidic chip integrated with a screen-printed carbon electrode [36]. A
study demonstrated the detection of multiplex quantitative
loop-mediated isothermal amplification using a paper/poly(methyl
methacrylate) hybrid CD-like microfluidic Spin Chip integrated with
DNA probe-functionalized GO nano sensors [37]. Furthermore, another
study reported the development of a signal-on photoelectrochemical
sensing system for the detection of prostate-specific antigen by
employing reduced graphene oxide/BiFeO3 nanohybrids [38]. Oh et al.
conducted a study involving the utilization of a GO quenching-based

Fig. 3. The graphical presentation of characteristics of graphene including its atomic structure, electronic/thermal conductivity, mechanical strength, and unique
physical properties.
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molecular beacon imaging technique for investigating the
exosome-mediated transfer of neurogenic miR-193a [39]. Singh et al.
developed a microfluidic immunochip with high sensitivity and selec-
tivity for the detection of Salmonella typhimurium bacterial cells. In a
similar way, Zhao et al. successfully integrated anti-E. coli
antibody-coated graphene into microchips for the purpose of detecting
E. coli bacteria [39]. The concentration of E. coli in the sample solution
was determined by measuring the resistance of the graphene. This
immunochip employed specific antibodies to selectively capture and
detect the target bacteria, offering a reliable and efficient method for
bacterial detection (Fig. 4).

4.2. Microfluidics biomolecules detection

Graphene-based microfluidics has shown a promising role for the
detection of biomolecules. By integrating graphene into microfluidic
devices researchers enhanced the performance of biomolecule detection
assays. Various strategies have been used in graphene-based micro-
fluidics for biomolecule detection. For an example, an electrochemical
microfluidic approach was studied for the separation and detection of D-
methionine and D-leucine enantiomers [42]. Perry et al. used GO in
droplet-based microfluidic microsystems and explored as a strategy to
inhibit protein biofouling [43]. Bao et al. studied the immobilization of
trypsin via a GO-silica composite as a method to obtain efficient
microchip proteolysis [44]. This approach involves incorporating
trypsin within a GO-silica composite coating on the surface of a micro-
chip, enabling the creation of microfluidic bioreactors for proteolysis.

A magnetic microfluidic device composed with graphene nanosheet
has been developed for the homogeneous online monitoring of pyro-
phosphatase activity [45]. The integration of graphene into a micro-
fluidic platform allows for real-time monitoring and analysis of
individual cells as they pass through the channel. Therefore, the gra-
phene transistor array integrated microfluidic flow for the sensing of

malaria-infected single-cell level red blood cells was reported [46]. The
capacitively coupled changes in the conductivity of graphene induced by
malaria-infected red blood cells, along with the characteristic conduc-
tance dwell times, enable the acquisition of specific microscopic infor-
mation about the disease state with high sensitivity (Fig. 5a–c) [46].
However, disposable paper-based microfluidic immunosensor has been
studied using a rGO-tetraethylene pentamine/gold nanocomposite
decorated carbon screen-printed electrode [47]. This immunosensor
offers a portable and cost-effective platform for sensitive and selective
detection of target analytes (Fig. 5d). Furthermore, Zhihua Pu et al. [48]
developed monitoring device for a continuous glucose detection using a
graphene-based electrochemical sensor integrated into a microfluidic
system. This device offers a reliable and real-time monitoring solution
for glucose levels that electrochemical sensor is modified with graphene
to enhances the sensitivity and selectivity towards glucose detection.

4.3. Microfluidics toxicity detection

Graphene-based microfluidics has emerged as a highly promising
platform for the detection of contaminants in diverse applications. Re-
searchers have been able to enhance the performance of contaminant
detection assays when combined graphene based microfluidic devices.
Functionalization of graphene surfaces with specific receptors, such as
antibodies or aptamers are useful for selective capture and detection of
target contaminants. The interaction between the impurities and the
graphene surface led to detect through various methods, including
electrical, optical, or electrochemical techniques. Park et al. introduced
an advanced approach for the detection of trace lead ions (Pb2+) by
integrating a microfluidic device with a DNA aptamer-linked photo-
luminescent GO QD sensor (Fig. 6A) [49]. Additionally, Fig. 6B shows a
digital image and a cross-sectional view of the assembled microfluidics
device providing a visual representation of itstheir structure and
configuration. This technique allows the efficient extraction of trace

Fig. 4. (a) Schematic structural presentation of PDMS microchannel with electrodes affixed to monolayer graphene. The biosensor is located at the center of the
microchannel under the PDMS structure. (b) Applied sputter coater for both sides coating of the electrodes, with a mask covering the upper surface of the graphene.
Reprinted with permission, copyright, 2020, Elsevier [40] (c) Illustration of designed PDMS/paper-based hybrid microfluidic system for pathogen detection
considering GO biosensors. (d) Microfluidic biochip layout (e) Illustrate the principle of the aptamers and pathogens detection. (f) Schematic diagram of the protocol
to introduce the functionalized GO and (g) test samples in microchannels. Reprinted with permission, copyright, 2013, Royal Society of Chemistry [41].
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metal ions from large-volume samples (Fig. 6C). Furthermore, an
investigation was conducted to explore microfluidic flow passing
through a polyaniline matrix supported by lamellar-structured gra-
phene, with the aim of enhancing mass transfer during the electro-
catalytic reduction of hexavalent chromium [50]. However, using a

microfluidic system, GO microspheres were fabricated with precise
control over their size and morphology [51]. The microfluidic approach
allowed the formation of uniform and monodisperse GO microspheres,
which is useful for the removal of perfluorooctane sulfonate from
polluted water. Zhang and colleagues presented an inexpensive and

Fig. 5. The detection of single Plasmodium falciparum-infected erythrocyte using graphene-based materials (a) Graphica representation of on quartz surface gra-
phene transistors. (b) DIC picture of independent graphene transistors integrated with the microfluidic device. (c) 3D AFM images of parasitized erythrocyte.
Reprinted with permission, copyright, 2011, American Chemical Society [46] (d) The schematic illustration of the modification and assay procedure of the
immunosensor. Reprinted with permission, copyright, 2017, Elsevier [47].

Fig. 6. (A) Graphic design of a 5-layered sample microfluidics device. (B) A visual representation of the microfluidics device consists of resin (top), and a side view of
the fully assembled microdevice (bottom). (C) The setup for the detection of Pb2+ using a GOQD sensor, facilitated by fluorescence quenching. Reprinted with
permission, copyright, 2015, American Chemical Society [49].
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straightforward paper-based microfluidic device designed for concur-
rent multiplex analysis of various chemical contaminants in food [52].
The efficacy of this apparatus has been effectively demonstrated in the
simultaneous identification of the heavy metal mercury (II) ion (Hg2+)
and silver (I) ion (Ag+), as well as the detection of aminoglycoside an-
tibiotics residues in food. Furthermore, its utilization exhibits significant
promise for the advancement of environmental surveillance and clinical
diagnostics.

4.4. Microfluidics based biosensors

Biosensors represent invaluable instruments for the detection of
diverse biological entities, encompassing cells, pathogens, proteins, and
other biological molecules. The integration of biosensing devices with
microfluidics not only facilitates streamlined sample preparation,
portability, and diminished detection time and cost but also imparts
distinctive attributes, including label-free detection and heightened
sensitivity [53] In graphene-based microfluidics, graphene is integrated
into the microfluidic channels or as a sensing element on the surface of
the channels. This integration allows for efficient transport of fluids and
analytes, as well as sensitive detection of target molecules. The high
electrical conductivity of graphene enables the development of elec-
trochemical sensors, where graphene serves as the electrode material.
Additionally, the large surface area of graphene provides ample binding
sites for immobilizing biomolecules or functionalizing with specific re-
ceptors, enhancing the sensor’s specificity and enabling the detection of
specific targets. Jiao et al. [54] introduced a novel approach involving
wearable graphene sensors integrated with microfluidic liquid metal
wiring for applications in structural health monitoring and human body
motion sensing. Dou et al. [55] reported interfacial nano-biosensing in
microfluidic droplets for high-sensitivity detection of low-solubility
molecules. Besides, modified graphene-polyaniline-based

electrochemical droplet microfluidic sensor has been reported for the
determination of 4-aminophenol [56].

In recent studies, the utilization of nanoengineered materials in
conjunction with microfluidic platforms has demonstrated remarkable
progresses in sensing and detection. One such example involves the
application of a nanoengineered mesoporous L-cysteine-graphene
hydrogel on a microfluidic surface plasmon resonance chip for the
detection of human cardiac myoglobin molecules [57]. Another notable
development involves the incorporation of 1-layer graphene, obtained
through a exfoliation technique into a microfluidic device for the
effective detection of chlorpyrifos, a pesticide, at femtomolar concen-
trations [58]. Moreover, the incorporation of nanosheets of graphene
oxide into a microfluidic system demonstrated precise enhanced isola-
tion of natural killer cells [59]. This approach shows promise in the
context of cancer diagnosis. Additionally, graphene field-effect transis-
tors have garnered significant interest in the field of biosensor devel-
opment, primarily for their exceptional properties that make them
well-suited for DNA detection applications [60,61]. In a very recent
development, real-time monitoring of biochemical processes on a
microfluidics chip was achieved by integrating a graphene field-effect
transistor, specifically for DNA detection [62]. The studied program-
mable device content integrated setup, microfluidics flow, microfluidics
chips has exhibited crucial versatility in the detection of biomolecules
within a fully portable-automated platform (Fig. 7).

5. Conventional graphene in biomedical industries

Conventional graphene, with its exceptional properties has shown
significant potential in various biomedical applications. Current
advanced materials such as gold nanoparticles, silicon-based materials,
and polymers like PLGA (poly(lactic-co-glycolic acid)) have been widely
used in biomedical applications. These materials are effective in drug

Fig. 7. (a) The integrated graphene chip and microfluidic system for DNA detection (b) A visual representation of a graphene chip installed within a PDMS flow-cell
and connected to an Arduino-compatible reader board for the acquisition of transfer curve data (c) The optical micrograph illustrates the position of a graphene
channel located between gold contacts within the chip. Reprinted with permission, copyright, 2022, Elsevier [62].
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delivery, tissue engineering, and biosensing. However, they have some
limitations over graphene-based materials. Such as gold nanoparticles
are extensively used in drug delivery and photothermal therapy due to
their biocompatibility and ease of functionalization. However, they can
suffer from issues related to stability and potential toxicity at high
concentrations and also expensive. Graphene-basedmaterials, with their
high surface area and robust mechanical properties, offer enhanced
stability and a larger loading capacity for therapeutic agents, which can
reduce the required dosage and moderate toxicity concerns. Again,
silicon-based materials are popular in biosensing and microfluidics due
to their excellent electronic properties and compatibility with existing
semiconductor technologies. Yet, silicon can be hard and may require
complex fabrication processes. In contrast, graphene has exceptional
electrical conductivity, flexibility, and mechanical strength provide a
more durable and versatile alternative. Graphene is flexible and trans-
parent electrodes also allows for the development of more advanced and
miniaturized biosensors. Besides, polymers like PLGA are widely used in
tissue engineering and drug delivery due to their biodegradability and
biocompatibility. However, their mechanical properties and drug
release profiles can sometimes be suboptimal. Graphene-based materials
can enhance the mechanical strength of polymer composites and pro-
vide more controlled and sustained drug release due to their large sur-
face area and ability to form strong interactions with drug molecules.
Here are some key areas where conventional graphene-based materials
have been explored. A lot of interest has been evaluated to graphene-
based drug delivery systems in biomedical research because of their
special qualities and potential uses [63]. Future medicine will greatly
benefit from the usage of graphene-based materials due to their
distinctive properties, which include an high surface area, exceptional
mechanical strength, superior biocompatibility and less toxicity [64,65].

5.1. Transportation of drugs

Drug delivery is the process of controlling therapeutic substances to
the body in order to obtain a desired therapeutic effect. It involves the
transportation of drugs from their site of administration to the target site
within the body, where they can exert their pharmacological action
[64]. Increased drug loading efficiency and stability can be achieved by
using GO with oxygenated functional groups. To counteract the acidic
microclimate of tumor tissues, GO can be programmed to release drugs
in increments according to their pH [78]. Drug delivery characteristics
have been improved by the creation and testing of scaled-down GQDs

that are biocompatible and photostable [66]. As an innovative approach
to targeted medication administration and effective anti-cancer therapy,
tri nanocomposite combines gelatin/gum arabic with graphene-oxide
[67]. Ibrahim et al. sheds light on the potential of Gr nanosheets for
use in the delivery of therapeutics [68]. Graphene nanoparticles have
been conjugated with a wide range of tumour and anticancer drugs for
delivery including Rituxan, doxorubicin, hypocrellin A, and campto-
thecin (see Table 1).

5.2. Gene transfer

Gene transfer refers the introduction of foreign DNA or RNA into an
organism for the purpose of studying or treating the organism. Trans-
fection involves the introduction of external genetic material into cells
with the purpose of studying gene function, treating genetic illnesses,
altering cellular processes, producing therapeutic proteins, or investi-
gating gene function [84]. Gene therapy’s promise to heal rare heredi-
tary and single-gene disorders through genetic engineering and
regenerative medicine has received attention. Gene therapy kills tumor
cells without chemotherapy by blocking cell pathways with DNA or RNA
[81–84]. This method can remove, replace, or add disease-fighting genes
[85]. Some examples of nanocarriers based on graphene that have been
used for gene delivery are included in Table 2.

5.3. Tissue regeneration & restoration

When human tissue or a scaffold sustains an injury, tissue biologists
engage in the development of biological alternatives and safe materials
with the aim of facilitating the healing or replacement of the damaged
tissue. The importance of creating an optimal composite material with
all necessary properties cannot be overstated. The extensive utilization
of graphene nanomaterial in the fields of medical science and tissue
engineering can be attributed to its remarkable ability to interact with
various biomolecules such as DNA, enzymes, proteins, and peptides.
This capacity has significantly contributed to the advancement of
regenerative medicine [94]. Tissue engineering is a science that uses
graphene-based materials to improve cellular development, tissue
rejuvenation, and repair by incorporating graphene and its derivatives
into scaffolds or substrates. Graphene has a number of properties that
make it a good contender for improving the field of tissue engineering.
These characteristics include its high mechanical strength, large surface
area, and exceptional electrical conductivity [95]. In bone tissue

Table 1
Successive graphene-based materials for drug delivery systems.

SL. Nanoscale structures made of graphene Targeted Cell Drug medium Results Ref.

1. GQD PC12 cell line artesunate and mefloquine Drug resistivity and toxicity condition
improved

[69]

2. GONR-PEG-DSPE Glioblastoma multiforme
cells

Lucanthone Toxicity improvement [70]

3. GO/AuNS-PEG/Ce6 EMT6 Heat and ROS disrupted
lysosomal membrane

Inducing Cell death [71]

4. GO-polyacrylic acid Mouse glioma GL261 cancer
cells

1,3-bis (2-chloroethyl)-1-
nitrosourea (BCNU)

Higher DNA interstrand cross-linking and
lower IC(50) value.

[72]

5. GO-sterculia gum-poly Colon Cells Vancomycin Network density, characteristics, and swelling
media pH were impacted.

[73]

6. PEGylated-GO Carcinoma cell pGO-Pt/DOX Decreased Pt and DOX toxicity [74]
7. GO-maltodextrin Human breast carcinoma

cells (MCF7)
Folic acid Excellent tumor inhibition with chemo-

phototherming
[75]

8. GO-PEG Osteosarcoma cell and
glioblastoma cell.

Cisplatin, carboplatin and
oxaliplatin.

Breast cancer migration inhibition [76]

9. GO-chitosan MGC-FU FI-Nanostay Drug loading and pH-dependent sustained
release improved.

[77]

10. GO HeLa cells Hypocrellin A and EZNA
reagent

Suppresses tumors [78]

11. rGO NIH3T3 cell CS-rGO-CeO2 Superior cell adhesion [79]
12. carboxymethyl cellulose (CMC)/starch/

reduced graphene oxide (RGO)
Tumor Cells Curcumin Long-lasting, pH-sensitive curcumin delivery

with low toxicity.
[80]
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engineering, electrospun fibres of GO-reinforced polycaprolactone bio-
composites showed that scaffolds might increase physico-mechanical
properties and attain considerably enhanced biological features
compared to bulk PCL [96]. Nair et al. discovered that incorporating 0.5
and 1.0 wt% of GO nanoflakes into the gelatine-hydroxyapatite matrix
increased the mechanical strength and osteogenic differentiation [97].
Aparicio-Collado et al. finds that rGO enhances the electrical conduc-
tivity of nanohybrid hydrogels to muscle tissue levels. confirming the
validity of the examined scaffolds for use in bone tissue engineering
[98]. Fig. 8 demonstrates Improved and scalable stem cell culture,
osteoinduction, and tissue engineering using a 3D-printed graphene
electrode device [99]. A 3D microporous scaffold from an Functional-
ized graphene oxide based nanocomposite and adipose-derived stem
cells was recently reported for advanced tissue engineering [100,101].

5.4. Theranostics

Theranostics are cutting-edge methods of treatment and diagnosis
that can be combined into a single nano-system [102] where the goal is
better patient care through more targeted and efficient drug custom-
isation in real time according to diagnostic data [103]. Graphene-based
nanocomposites have seen increased investigation into potential suited
for the creation of theranostic tools for the recent year [104]. Graphene
and its derivatives have gained a lot of interest because their beneficial
surface qualities allow for the integration of multiple modalities onto a
single platform [105]. Nano-theragnostic systems based on graphene
that have broad biomedical implications have been synthesised and
studied. Combining imaging with other therapeutic modalities including
gene or drug delivery, heat-based PTT, and light-based photodynamic
therapy is the focus of these systems [106].

6. Recent advanced of graphene in implants

Graphene has emerged as the favoured form for biomedical appli-
cation [107]. Among the family of graphene-based nanomaterials, there
exist various members including reduced graphene oxide, multilayer
graphene, graphene nanoribbons, and other graphene-family materials
with varying degrees of functionalization [108,109]. Owing to their
exceptional properties, graphene and its derivatives have widespread
utilization in the biomedical sector. Notably, they have found extensive
application in the domain of medical implants, owing to their remark-
able properties.

6.1. Biocompatibility of implants

Biofilms are an essential part of a bacterium’s or fungus’s survival in
the natural world, and they may also be found on the surfaces of teeth,
prostheses or implant-anchored restorations [110]. Biocompatible and
highly antibacterial, graphene-based products can be used to stop the
spread of germs [111–113]. Decorating GO with AgNPs results in a
GO-Ag nanocomposite enhanced their antibacterial properties [114,
115]. The interaction between microbial biofilms of Streptococcus mu-
tants, Enterococcus faecalis, Pseudomonas aeruginosa, and Candida
albicans was investigated by Agarwalla et al., who also examined the

Table 2
Applications for transporting genes using graphene and related materials.

SL. Gene Graphene
nanomaterial

Study’s primary
focus cell

Ref.

1 anti-GAPDH siRNA Dox-loaded PAMP-
CP-rGO

EPPT1 [86]

2 Enhanced green
fluorescent protein
(EGFP)

Graphene-
polyethylenimine
(1, 2 and 10 kDa)

HeLa cells [87]

3 Tolerogenic dendritic
cells

GO nanosheets allogeneic
hematopoietic
stem cell

[88]

4 Luciferase reporter gene Graphene-
polyethylenimine
(25 kDa)

HeLa cells [89]

5 Glycyrrhetinic acid GA-PEG-NGO-
Dendrimer, GPND

hepatocellular
carcinoma

[90]

6 CpG
oligodeoxynucleotides

GO-β-D-glucan RAW264.7 cells [91]

7 anti-miRNA21 PEI-modified GO TNBC cells [92]
8 survivin-siRNA (GCE/

siRNA)
GO modified with
chitosan an d Anti-
EpCAM

MCF-7 [93]

Fig. 8. Electrode device using 3D-printed graphene for enhanced and scalable stem cell cultivation, osteoinduction, and tissue engineering [99].
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surface and wettability features of graphene covering on Ti. Depositing
graphene on Ti (Control) once, twice, and five times using a liquid-free
method [113]. Using nitinol as a base, Zhao et al. created a coating made
of gelatin-functionalized GO (GOGel). Biocompatibility and antibacte-
rial efficacy were investigated. The osteoblastic cells isolated from mice
performed best when exposed to GOGel regarding adhesion, prolifera-
tion, and differentiation. They also discovered that GOGel and GO could
suppress E. coli [116].

6.2. Anti-corrosion coating

Joint replacements, dental implants, orthopaedic fixations, stents,
and orthodontic and endodontic applications are just some of the many
places metallic biomaterials are put to use [117]. Inhibitors, coatings
and nanocoating of various sorts are applied to these metals and alloys
[118,119]. Graphene’s properties as a chemically inert, atomically sta-
ble, and very robust coating make it a promising candidate for appli-
cation as a corrosion barrier layer [120–124]. Coating implants with
graphene might boost their surface characteristics and reduce corrosion
[128–130]. Additionally, GO coating has excellent potential as a
regenerative dental material. Human periodontal ligament stem cells
were tested in vitro for their bioactivity on either a GO-coated Ti sub-
strate or a sodium titanate substrate, with the latter receiving a more
positive evaluation [124–128].

6.3. Surface refinement of implants

Polymers, hydrogel, chitosan derivatives, silicone, protein lubrica-
tion, and ZnO NPs are only some of the biomaterials that have been
investigated for their potential to reduce friction in biomedical appli-
cations. However, the findings suggest that the coating is unstable and

does not have the predicted friction-reduction characteristic. Therefore,
further work is needed to create a coating with good lubricating qualities
[128–130]. Graphene film coatings have shown promise in reducing
friction thanks to extensive research into their lubricating and
friction-reducing characteristics [131–133]. A friction coefficient of
0.05 was found to be significantly reduced when GO was dissolved in
water. Graphene coverings yielded similar outcomes in other in-
vestigations [132,133]. Further decrease friction with a coating made of
GO/AgNPs [134].

7. Applications of graphene in bio imaging technology

Bio-distribution of medicines may be tracked reliably using electro-
magnetic spectrum subsets, and biological processes like cellular uptake
can be seen with tailored administration [135–137]. By using the
physiochemical features of GO, such as its large surface area, high
electrical conducting ability, and remarkable capacity for stacking
various biomolecules via chemical or physical interaction, biosensors
based on GO have been produced [138–140]. Bioactive GQD-based
polymer composites have several desirable properties, including their
use as appropriate imaging probes in various bioimaging techniques and
their high level of biocompatibility [141]. Graphene biomolecules, both
self-assembling and tuneable, make it possible to construct ultrasensi-
tive biosensors for recognizing DNA and other atoms [138,142].
Graphene-ultrathin films make superior biosensing and electrochemical
sensors more accessible [143]. An improved biosensing platform for the
detection of motile bacteria is presented in a new paper by Bing Li et al.
(see Fig. 9) that makes use of two-photon polymerisation and graphene.
Bio-inspired 3D printing and 2D materials are put to use in a novel way
in the suggested platform, allowing for the creation of sensing devices
with potential biomedical applications [144].

Fig. 9. Micro-structured graphene boosted by biological inspiration shown in schematic form. (a) Venous valves in a blood vessel shown schematically. (b) Sensor on
SiO2/Si substrate, shown in three dimensions. (c) Slice through the bacterium sensor made of graphene. (d) pH sensor cross section and (e) bacteria sensor chemical
functionalization. (f) The Focusing Process, Seen in Three Dimensions (g) The 2D focusing mechanism and asymmetrical characteristics, seen from above [144].
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Because of its high electrochemical and photochemical activity as
carbon nanotube, is an excellent material for sensor-based applications
in the pharmaceutical industry. Table 3 shows a few examples of where
it has been useful. Graphene’s utility extends beyond biosensors to the
realm of medical diagnosis. Graphene may soon be at the forefront of
biomolecules for detecting illness and response to treatment. On the
other hand, using biosensors allows for the non-invasive diagnosis of
glucose, glutamate, cholesterol, and haemoglobin [145–147]. More-
over, the biosensors would readily detect smaller/lighter markers
because of the use of graphene [148]. Comparable sensors strengthened
graphene, which expedites the process with quick detection and
increased sensitivity in a cost-effective method.

7.1. Advantages

Graphene-based materials offer significant advantages in biomedical
applications due to their interesting properties [157,158]. Their high
surface area, excellent mechanical strength, and remarkable electrical
conductivity make them ideal for modern biomedical applications
[159–161]. In conventional biomedical technologies, graphene and its
derivatives are used in drug delivery systems, where their high surface
area allows for the efficient loading of therapeutic agents [162]. The
ability to functionalize graphene with various biomolecules enhances
their biocompatibility and specificity, making targeted drug delivery
efficiently [160]. Additionally, graphene has strong antibacterial prop-
erties that contribute to use in wound dressings and implants, reducing
the risk of infection and promoting faster healing.

Considering the microfluidics, graphene-based materials have ad-
vantages by enhancing the sensitivity and functionality of lab-on-a-chip
devices. The exceptional electrical conductivity of graphene enables the
development of highly sensitive biosensors, capable of detecting minute
concentrations of biological markers which is crucial for early diagnosis
and monitoring of diseases. Moreover, the thin and flexible nature of
graphene allows to fabricate microfluidic devices with complex, mini-
aturized channels that can efficiently manipulate small volumes of
fluids. This capability is particularly beneficial in personalized medi-
cine, where precise control over fluid flow and reaction conditions is
essential for accurate diagnostics and tailored treatments. The integra-
tion of graphene in microfluidic technology thus opens new avenues for
advanced biomedical applications, combining high sensitivity, rapid
analysis, and the potential for portable diagnostic tools.

8. Current challenges

The research on graphene-based materials and their medical appli-
cations has made significant progress, although remains several

challenges. Some of the current challenges in this field include:
biocompatibility and safety, tissue-specific targeting, biodegradability,
scalability and production, stability in biological environments, drug
delivery challenges, imaging and detection sensitivity, long-term effects
etc. Besides, graphene-based microfluidics encompass a range of critical
issues that need to be addressed to unlock the full potential of this
innovative field. Biocompatibility and cytotoxicity concerns must be
thoroughly understood, especially in biomedical applications, to ensure
the safe use of graphene-based materials. Achieving precise fluidic
control and minimizing surface interactions remains a challenge,
affecting the efficiency of microfluidic operations. The scalability and
consistent production of high-quality graphene materials for micro-
fluidic devices, as well as integration with existing microfluidic systems,
present significant hurdles. Regulatory compliance and standardization
of protocols for device design and evaluation are essential for wide-
spread adoption. Enhancing detection sensitivity and specificity for
various analytes and improving the durability and long-term stability of
graphene-based microfluidic devices are also pressing concerns.
Addressing these challenges, requires interdisciplinary collaboration
and ongoing research to explore the full potential of graphene-based
microfluidics across various fields. In healthcare system, such collabo-
ration can help to the develop the advanced diagnostic tools and ther-
apeutic systems that influence the unique properties of graphene for
enhanced sensitivity and specificity. For example, researchers from
materials science, biology, and engineering can work together to create
graphene-based biosensors integrated into microfluidic platforms that
enable early detection of diseases and real-time health monitoring. In
diagnostics, the interaction between graphene-based materials and
microfluidics can lead to the creation of lab-on-a-chip devices that
perform complex analyses with minimal sample volumes. Researchers
from diverse fields such as physics, medicine, and microengineering can
collaborate to optimize these devices for a wide range of applications,
from blood tests to genetic screening, ultimately making diagnostics
more accessible and affordable.

9. Conclusions and prospects

Graphene-based nanomaterials have shown significant advance-
ments in synthesis processes and material characteristics, making them
promising for healthcare applications. Different forms of graphene-
based materials, produced using environmentally friendly methods
and the latest advancements in graphene nanotechnology, are emerging
as ideal electrode materials in biomedicine. The integration of graphene-
based materials with microfluidics offers great potential to revolutionize
healthcare and diagnostics. The unique properties of graphene such as
high surface area, excellent electrical conductivity and biocompatibility

Table 3
Overview of graphene as a pharmaceutical sensing material.

Sl. Modifier Electrode Detection method Target Linear range Sample Recovery % Ref.

1 GO Glassy carbon
electrode (GCE)

Cyclic voltammetry
(CV), LSV

Midecamycin
(MD)

0.3- 200 μM Serum, urine 95.6–104.3 [149]

2 Ni0.5Zn0.5Fe2O4/
graphene

GCE CV, Differential pulse
voltammetry (DPV)

Omeprazole
(OMZ)

0.03–100 μM Serum 97.5–101.5 [150]
3 OMZ capsule 98.6
4 Graphene GCE DPV L-dopa 0.04–79.0 μM Tablet, mouse brain

extract
101.4–109.42 [151]

5 GNRs-GO-CNTP GCE Square Wave
Voltammetry (SWV)

Indomethacin 0.2–0.9 μM,
2.5–91.5 μM

Human blood serum,
urine, pharmaceutical

98.0–103.5 [152]

6 Graphene/TiO2/
polyaniline (PANI)

GCE SWV Aripiprazole
(ARP)

0.0112–0.0893 μM Pharmaceutical
formulations

99.0–101.6 [153]

7 Graphene
nanoparticles-Bi

GCE CV, LSV Dopamine (DA) 1.0–30.0 Commercial injection 98.2–98.4 [154]

8 Graphene/2,7-BF Graphene paste
electrode (GPE)

CV, SWV, Cetrimide
(CA)

Methyldopa 0.09–500.0 Tablet 97.6–102.0 [155]
9 Urine 98.7–103.2
10 Graphene-AuNPs Screen printed

carbon electrode
(SPCE)

CV, SWV Rutin 0.1–15.0 Tablet 96.52–102.97 [156]
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make it well-suited for a wide range of biomedical applications. When
combined with microfluidic systems, which provide precise fluid control
at the microscale, graphene-based devices enable rapid, cost-effective,
and sensitive diagnostics. These integrated platforms hold promise in
point-of-care diagnostics, personalized medicine, drug delivery, and
tissue engineering. Graphene-based sensors integrated into microfluidic
devices can detect biomarkers with high specificity and sensitivity,
facilitating early disease detection and real-time monitoring. While
graphene-based materials hold significant promise in biomedical ap-
plications, there are several challenges that need to be addressed as
below to fully realize their potential.

1. Biocompatibility and Toxicity: Surface functionalization of gra-
phene with biocompatible molecules can be used to overcome this
problem. Coating graphene with polymers, proteins, or other
biocompatible materials can enhance its compatibility with biolog-
ical tissues and reduce potential toxicity.

2. Scalability and Reproducibility: Developing standardized, scalable
production methods such as CVD and improving quality control
measures can help achieve consistent graphene materials. Collabo-
rative efforts between industry and academia can also help in scal-
able production techniques.

3. Integration with Biological Systems: Advancements in nanotech-
nology and bioengineering can facilitate better integration of gra-
phene with biological systems. Optimizing the design of graphene-
based devices and employing bio-inspired engineering approaches
can improve compatibility and functionality.

4. Complex Fabrication Processes of chips: Simplifying fabrication
processes through innovative techniques such as inkjet printing or
3D printing can reduce costs and complexity. Utilizing self-assembly
methods and developing new lithography techniques can also
streamline the production of graphene-based microfluidic devices.

5. Stability and Durability of chips: Enhancing the chemical stability of
graphene through surface treatments and protective coatings can
improve its durability. Employing robust material designs and
incorporating stabilizing agents can also extend the lifespan of
graphene-based microfluidic devices.

6. Sensitivity and Specificity of Biosensors: Functionalizing graphene
with highly selective recognition elements, such as antibodies or
aptamers, can enhance specificity. Developing advanced signal pro-
cessing algorithms and integrating complementary sensing tech-
niques can further improve the accuracy of graphene-based
biosensors.
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