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1. Definition of spectral descriptors
X-ray absorption spectrum is a complex multidimensional object that consists of hundreds 
of points. Structural information is hidden in the spectral features that often overlap, and 
in general there are no well-defined rules to decipher the spectrum as tabulated for FTIR, 
NMR or cell parameters in XRD. Based on theoretical datasets, ML may help to 
understand the information contained in different regions of spectra. Torrisi et al. 1 applied 
random forest ML model to find relationship between polynomial descriptors of spectrum 
and material properties in terms of Bader charge and mean nearest neighbor distance 
materials. Martini et.al. applied principal component descriptors for the step-by-step fit of 
XAS spectrum refining first such distortions that affect the spectrum in a stronger way 2. 
The descriptor-based approach was found to be useful for studying analytical 
relationships between spectral and structural descriptors even for amorphous materials 
3. Those combinations of descriptors that demonstrate the highest quality in cross-
validation may be further applied for the speciation of local coordination of the catalyst in 
the reaction mixture as demonstrated for Ru molecular complexes 4. Herein, we employ 
several sets of descriptors, based on different approaches to the featurization of spectra 
for machine learning and visualization. 

Table S1. Combinations of descriptors applied in the main text. The energy intervals are 
given in the Cr K-edge photon energy units.
# Name Description
1 Spectrum All points if spectrum in the energy interval [5980…6080] eV and 

values of the first derivative in the same energy interval
2 PCA Three first PCA components evaluated from the merged library 

Cr+V in the energy range [5980…6080] eV of shifted library
3 t-SNE Two components of the t-SNE dimensionality reduction 

procedure, applied to the spectra in range of [5980…6080] eV 
and few strong spectral features (vide infra)

4 Pre-edge Pre-edge centre and area after the subtraction of baseline

On Table S2 one can see the full list of implemented spectral descriptors and their short 
description. 

Table S2. Full list of descriptors of spectra constructed from selected spectral features or 
mathematical processing of the whole set of spectra aiming to improve sensitivity to a 
target property. The energy intervals are given in the Cr K-edge photon energy units.

Short 
Name

Full name Details

1. Descriptors based on spectral features
Spec Spectrum Spectrum itself in the form of the intensity vector 

in range of [5980…6080] eV.
EdgeE Energy of the absorption 

edge
Calculated as an inflection point in the 
arctangent function that fits the whole spectrum.

EdgeSlope Slope of the rising edge 
of the spectrum

The slope of the arctangent function in the 
inflection point.

PEarea area under the pre-edge The pre-edge region is fitted by a baseline and 
after subtraction the area is calculated. Pre-
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edge should not be mixed with shoulder for 
square planar complexes and transitions to the 
delocalized d-band5.

PEcenter centroid energy of the 
pre-edge

Pre-edge centroid position and area after 
subtracting the baseline.

Value at 
E energy

Intensity of the selected 
spectrum point at the 

specific energy E

Impurity-based feature importance of the 
trained ExtraTrees model is used to select the 
most valuable spectrum points and use them for 
further analysis. Four values of spectra at 
specific energies: 5995, 6003, 6037, 6043 eV 
for shifted, common, energy scale.

1st 
maximum 

Centroid energy and 
intensity of the main 

maximum

Centroid position (energy and intensity) for the 
XANES curve (not area in contract to pre-edge) 
in the region Intensity > 0.6 Energy < 
EFermi+20. Such definition is more stable than 
single maximum since the latter may be splitted 
into several small peaks.

2. Database related descriptors
PCA Projections on the 

principal components 
Spectra are projected onto three first principal 
components, calculated in the region from 5980 
to 6120 eV for whole dataset after the edge shift. 

Scaled 
PCA

Normalized PCA 
components

Three PCA components from PCA analysis 
applied to scaled XANES spectra (at each point 
of spectrum subtracted average and normalized 
by dispersion over the whole database)

t-SNE t-distributed stochastic 
neighbour embedding

Nonlinear projection of high-dimensional 
spectra onto n-dimensional (here we use n=2) 
space constrained by similarity between 
probability distributions for original and 
projected data. The Euclidean norm is used to 
estimate distance between objects. 
Six values from the two-dimensional t-SNE 
decompositions for: 
- five PCA components of spectra; 
- five PCA components for scaled spectra; 
- four points of spectra as specified above.

2.1 Descriptors related to the target-property
BL Best linear combination 

of points in terms of 
prediction quality for a 
given property

Linear support vector machine (SVR) is applied 
to selected points of spectra to a construct a 
one-dimensional embedding that is of a high 
quality for the prediction of metal charge state 
or coordination number.

• linear combination from two values [first 
maximum E, 1st maximum intensity] for 
Formal charge



S4

• linear combination from four values of 
spectrum for target property CN

PLS Partial least squares A PLS model finds the linear combination of 
spectral points that explains the maximum 
variance of the target property: charge or 
coordination number. We construct PLS 
descriptors from the following datasets: 
- full spectra in the [5980…6080] eV energy 
interval correspondingly using coordination 
number as target property
- descriptors of spectra except t-SNE, PLS, BL 
using metal valence as target property
- descriptors of spectra except t-SNE, PLS, BL 
using coordination number as target property

For unknown spectra all database-related features are calculated by adding them to the 
dataset of library references and direct application of the methods, except BL and PLS 
components, where representations, constructed on the library of references, are used to 
project the unknown spectra. 

PCA descriptors
In Principal Component Analysis (PCA) XANES dataset 𝐗 is decomposed in the following 
way:

𝐗 = 𝐔(m×m)𝚺(m×n)𝐕T
(n×n) (1)

where 𝐗 can be considered as a matrix of dimensions (𝑚 × 𝑛), where m is the number of 
XANES energy points while n is the number of theoretical spectra constituting it, 𝐔 and 𝐕 
are two square unitary matrices, 𝚺 is a diagonal rectangular matrix while T denotes the 
transpose operator. The diagonal elements of 𝚺 are referred as the dataset singular 
values, whose magnitudes are proportional on the amount of variance of the related 
component. Columns in matrix 𝐔 have the dimensionality of a XANES spectrum and are 
referred as abstract mathematical components (i.e. they do not look line spectra, but their 
proper linear combination does). Matrix 𝚺𝐕 provides the weights which need to be 
employed to reconstruct each spectrum of 𝐗 from 𝐔. Considering equation (1), the ith 
XANES spectrum 𝛍i of 𝐗, can be rewritten as:

𝛍i(𝐄,𝐩) =
m

j=1
hij(𝐩)𝐮j(𝐄) (2)

where 𝐄 = (E1,…Em) is the set of XANES energy points, 𝐮j represents the jth column vector 
of 𝐔 while ℎij is the fraction of the jth component in the ith spectrum provided by matrix 𝚺𝐕. 
We explicitly introduce in equation (2) dependence of 𝛍i and hence hij on structural 
parameters p, since the theoretical training set is obtained by structural deformations, i.e. 
variation of p. It follows that each coefficient hij, here named as XANES multipliers, can 



S5

be considered as the projection of 𝛍i over 𝐮j. Because the dataset components 𝐮j are 
common for every spectrum in 𝐗, the dependence of XANES of parameters p resides in 
its multipliers hij. The latter, in this way, constitute a new class of descriptors. For a given 
experimental spectrum 𝛍exp PCA descriptors are calculated in the following way. The 
mean of the dataset is subtracted from the experimental spectrum first. Then the scalar 
product among the mean-corrected spectrum 𝛍exp and each of the selected columns (𝐮i) 
of 𝐔 is calculated: hexp

i = 𝛍exp ∙ 𝐮i. The first multiplier hexp
i=1 (first PCA-descriptor) will be the 

most intense while the subsequent PCA-descriptors will be sorted in descending order of 
intensity of XANES variation.

t-SNE descriptors
The t-Distributed Stochastic Neighbor Embedding (t-SNE), contrary to the PCA, 
represents a popular nonlinear dimensionality reduction technique, routinely used to 
visualize complex multidimensional data. One of the simple heuristics behind the t-SNE 
method is that it nonlinearly “projects” data points to a lower dimensional space, keeping 
the “proximity” relation of data points: ones, that are “neighbors” in the original space, 
remain neighbors in the projected space, whilst distant points remain distant compared 
to others after the dimensionality reduction 6.

In t-SNE, original datapoints X (XAS spectra or its features) are embedded in the 
space Y (t-SNE descriptors) by optimizing the Kullback–Leibler divergence:

𝐶 = 𝐾𝐿(𝐏∣∣𝐐) =
𝑖𝑗

𝑝𝑖𝑗log 
𝑝𝑖𝑗

𝑞𝑖𝑗 (3)

between probability distributions of the data points in the original X and embedding Y 
spaces, P and Q respectively. These distributions, in turn, are represented by joint 
probabilities pij and qij, obtained by symmetrization

𝑝𝑖𝑗 =
𝑝𝑗∣𝑖 𝑝𝑖∣𝑗

2 ,  𝑞𝑖𝑗 =
𝑞𝑗∣𝑖 𝑞𝑖∣𝑗

2  (4)

of probability densities of the dataset points in X and Y, modelled by Gaussian and 
Student’s t-distributions

𝑝𝑗∣𝑖 =
exp( ||𝐱𝑖 𝐱𝑗||2/2𝜎2

𝑖 )

𝑘≠𝑖
exp ( ||𝐱𝑖 𝐱𝑘||2/2𝜎2

𝑖 ), 𝑞𝑖𝑗 =
(1 ||𝐲𝑖 𝐲𝑗||2)―1

𝑘≠𝑙
(1 ||𝐲𝑘 𝐲𝑙||2)―1 (5)

where values σi are usually set such that each Gaussian kernel fits k nearest neighbors 
within one standard deviation of the probability density7. The C optimization method 
depends on the specific implementations of the algorithm and additional assumptions, 
usually introduced to speed up the calculation (for example, interpolation of Barnes-Hut 
t-SNE). In PyFitIt we mostly use python openTSNE implementation7. This method is 
affected by the curse of dimensionality. Therefore, we apply t-SNE not to the whole 
spectra but to their first five principal components derived from PCA analysis or to four 
selected points in the spectrum selected according to their importance
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PLS descriptors
When we use ML algorithm to predict label based on spectra data, we train it on the matrix 
in which a row is a spectrum and a column is all the spectra values at some energy point. 
Due to spectrum continuity the neighbor columns of the training matrix are approximately 
collinear. It results in troubles when training some ML models, in particular linear 
regression. Dimensionality reduction by PCA can improve the linear regression training 
process. PCA keeps the features with the most variance, but primary components may 
be irrelevant to predict the target. Partial Least Squares is a generalization of the PCA. 
While choosing the primary components PLS regression takes into account target feature 
and returns directions most correlated with the target feature. We use the PLS-regression 
implementation from sklearn library. The sklearn.cross_decomposition.PLSRegression 
class was constructed for three data configurations: 
- full spectra in the [5460…5560] eV and [5980…6080] eV energy intervals for V and Cr 
correspondingly using coordination number as target property. The energy intervals are 
given in the Cr and V K-edge photon energy units before alignment.
- descriptors of spectra except t-SNE, PLS, BL using metal valence as target property
- descriptors of spectra except t-SNE, PLS, BL using coordination number as target 
property
At first for each configuration the PLS-regression model with two components was fitted 
using data with known target properties. Then we apply its transform method for the full 
dataset. Thus, we obtain 6 pls-descriptors.

Feature comparison and selection
Supervised ML algorithm can be trained on any combination of descriptors and provides 
expected quality of the prediction via cross-validation procedure. In this section we 
demonstrate methodology to select their optimal combinations for a given target property. 
The best quality, in terms of accuracy and reliability of the prediction, can be obtained 
using the most complete set of noncorrelated descriptors. To find such uncorrelated pairs, 
we use the concept of mutual information (MI)8, which estimates mutual dependence of 
two descriptors by notions of information theory9. A non-negative value of a MI score is 
proportional to the amount of information one variable reveals about another. Figure S1 
shows the matrix of mutual information values for all pairs of descriptors, calculated as 
implemented for regression task in scikit-learn.
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Figure S1. The matrix of mutual information scores for pairs descriptors for the task of 
formal CN prediction in Cr database. Features are sorted in the order of their quality, 
estimated as MI between the feature itself and the target variable (formal CN). The values 
of diagonal elements of the matrix, i.e., MI between pairs of identical descriptors, are set 
to zero for the sake representation, since they show the highest MI scores.

Although it is known that nonmetric algorithms, including classification and 
regression trees, can handle the curse of dimensionality, in case of a big amount of 
mutually dependent features (features with high MI), tree-based ensemble algorithms can 
form many trees with identical nodes, in other words, they tend to pick subsets of features 
with the same information since they choose random subsets of features from all given. 
That leads to a lower quality of the algorithm, especially in case of “small datasets”: ones 
that have number of samples comparable to the number of features. Thus, to train an 
accurate and robust algorithm, and obtain reliable prediction, a small collection of good 
and independent features is needed. 

For example, MI matrix, calculated for descriptors in the task of formal CN 
prediction of Cr database, (Figure 6) shows that the best feature (e_femi_slope) is highly 
correlated with pls1_features_formal_CN, which in turn is highly correlated with t-SNE-
based features, pls1_xanes_formal_CN and pca2. On the other hand, MI scores between 
them and pls2_xanes_formal_charge and pls2_features_formal_charge are small. It is 
unclear what subset of these features will show the best performance. We found that the 
best accuracy is obtained for a combination of e_fermi_slope, pls1_features_formal_CN, 
tsne_values1_features and, highly independent from others, 
pls2_features_formal_charge, which was used further in CV procedure (vide infra), and 
same issues were addressed in the same manner also. Compilation of descriptors 
selected according to their independency as calculated by mutual information gives 
following sets of independent descriptors for separated libraries of edges: 
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- for Cr CN: efermi_slope', 'pls1_features_formal CN', 'tsne_values1_features', 
'pls2_features_formal charge
- for Cr charge: BLvaluesCharge', 'pls1_features_formal charge', 'value_6003’
- for V CN: BLvaluesCN', 'pls2_features_formal charge', 'value_5468’
- for V charge: BL1stCharge', 'pls1_features_formal charge', 'pe center', 'efermi_e', 
'value_5520', 'value_5485’

Figure S2. Dataset of Cr K-edge reference spectra and importance of individual points in 
the spectra for predicting Cr valence

The energy intervals are given in the Cr and V K-edge photon energy units before 
alignment. The choice of exact points in the spectrum as descriptors is based on their 
predictive power. Different points and regions of a spectrum have different importance for 
analysis and prediction of a target property. To estimate that, we depict the dataset of Cr 
K-edge spectra colored by their formal valence (Figure S2) or coordination number 
(Figure S3) together with impurity-based feature importance analysis of the ExtraTrees 
classifier as implemented in scikit-learn1. 
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Figure S3. Dataset of Cr K-edge reference spectra and importance of individual points in 
the spectra for predicting Cr coordination number

2. Difficulties in the energy alignment of absorption edges from different chemical 
elements.
K-edge X-ray absorption spectra of different chemical elements have similar shape if 
metal local atomic structures are similar. However formally similar compounds, e.g. V2O3 
and Cr2O3 or V and Cr have different lattice parameters that affect position of absorption 
edge and thus complicate relative alignments of libraries of different chemical elements. 
This problem was first discussed by P.Glatzel et al.10 and shown in Figure S4:



S10

(a) (b)
Figure S4. (a) Theoretical Mn K-edge XANES spectra for MnO6 octahedron with Mn-O 
distances 2.17 Å (solid line), 2.00 Å (dashed line) and 1.88 Å (short dashed line). 
Reproduced from10. (b) Theoretical Cr K-edge XANES spectra calculated from bcc 
structure of metallic Cr for two lattice parameters: from 2.88 Å (as in Cr metal) and 3.03 
Å (as in V metal).

Figure S4(b) shows that one can’t align libraries of Cr and V compounds using positions 
of their metallic references since lattice parameters in Cr and V metals are different. 
Therefore, in the main text we used empirical value 522.3 eV to align Cr and V libraries 
of spectra, while the energy difference between foil absorption edges provided lower 
accuracy in terms of metal charge classification (Figure S5).

Figure S5. Classification scatter plots based on pre-edge descriptors of spectra. Cr and 
V libraries were aligned by using energy shift 522.3 eV (left) and 524 eV (right). The 
value 524 eV was obtained from difference in the Cr and V absorption edges defined 
by their metal foils and such shif demonstrates worse accuracy.

To construct a combined library the V- and Cr K-edge XAS spectra were aligned on the 
relative energy scale by applying a constant energy shift 522.3 eV. This value was 
selected empirically based on the criteria of improved classification quality of metals’ 
oxidation state and coordination number (see Figure 4a corresponding to the best 
choice). The classification quality was lower when using a 524.0 eV shift corresponding 
to the difference between the K-edge energies of Cr and V foils (5989.0 eV versus 
5465.0 eV). This can be explained by the differences in the interatomic distances 
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among Cr and V references in similar local environments, which are known to affect the 
position of the absorption edge (see Figure 1 in 62 and Section 2 in ESI).

3. Ambiguities in LOOCV for small datasets
Small libraries are fraught with pitfalls when applied to supervised ML11. The problems 
are due to the ML algorithm overfitting, assessment of its quality, and prediction accuracy 
for an “unknown” sample (as opposed to reference library item). Some ML algorithms are 
free from overfitting due to the procedure of their construction and the preferential choice 
of the spectra for small libraries. This is the case of ensemble methods, e.g. Extra Trees 
12. However, relying solely on a single ML approach does not guarantee accurate 
prediction. This is especially true for small datasets where LOOCV quality and uncertainty 
of a given prediction have large confidence intervals. To overcome these problems 
additional information about the spectrum should be taken into account or at least several 
independent predictions should be averaged.

Figure S6 demonstrates why cross-validation analysis being efficient and mostly 
used in data science may provide misleading results for small unbalanced datasets. The 
first example concerns the case when class contains only one item (Figure S6a). 
Removing this item during LOOCV results in a wrong prediction because the algorithm is 
re-trained on a library containing no representative of this class. In this case, the cross-
validation quality will be poor, but the ML prediction can still be good if unknown data is 
located near the references.  Figure S6b illustrates different but also common case.  Each 
class in Figure S6b contains many library items, but all of them are similar. Removing one 
of them will result in high cross-validation quality since algorithm is trained on very similar 
references. However, evaluated LOOCV quality does not guarantee good transferability 
and proper prediction if the unknown data is far from the references. An example of the 
library with homogeneously distributed library items inside each class is shown in Figure 
S6c. In this case, the LOOCV can precisely estimate the approximation quality and MAE. 
However, if an unknown data point is far from the library items, the uncertainty of such 
prediction cannot be estimated with the LOOCV approach since all ML algorithms work 
well for interpolation but often fail in extrapolation.

Figure S6. Toy examples of the libraries when the LOOCV approach can be misleading. 
In panel (a), LOOCV is low, but the prediction (background color behind “unknown”) is 
correct. In panel (b), the LOOCV is high, but the prediction is wrong. In panel (c), the 
LOOCV correctly describes the uncertainty but should not be used to evaluate 
performance of the algorithm outside dataset. The background color in all panels is the 
predicted class by the algorithm trained on all the library items while the dashed line 
shows the true border between the classes.
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Since small size of library is the source of ambiguity in the analysis of uncertainties 
then augmentation of the library with the chemically diverse references is a way to 
improve accuracy and generalization ability of the trained algorithm. Figure S7 shows the 
augmentation of independent Cr-based and V-based libraries by their merging. The 
visualization is performed with two pairs of descriptors selected for metal charge and CN 
classification.

(a) metal charge prediction (Cr only) (b) metal CN prediction (Cr only)

(c) metal charge prediction (V only) (d) metal CN prediction (V only)

(e) metal charge prediction (Cr+V) (f) metal CN prediction (Cr+V)
Figure S7. Scatter plots demonstrating augmentation of independent Cr and V-based 
libraries by their merging.
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5. Synthesis and characterization of reference molecular compounds
Cr- and V-K-edge XAS Spectra were taken from the previous report, unless stated below. 
Commercially available materials were purchased from the corresponding supplier and 
used without further purification. V(Mes)3(thf)13, V(CH2SiMe3)4

14, V(NMe2)4
15, 

VO(CH2SiMe3)3
16, Cr(N(SiMe3)2)2(thf)2

17 and Cr(TBOS)2(tmeda)18 were synthesized 
according to the reported procedure.

Synthesis of Cr(N(SiMe3)2)2(OPPh3)2 (II.4p.5) (Synth-1): Cr(N(SiMe3)2)2(thf)2 (150 mg, 
0.29 mmol) was dissolved in toluene (5 mL), giving a blue solution. Triphenylphosphine 
oxide (OPPh3, 161 mg, 2 equiv.) was dissolved in toluene 5 mL, and was added to the 
solution of Cr complex at room temperature, immediately giving a yellow solution. The 
combined solution was stirred for 30 min and concentrated under vacuo. Recrystallization 
at -30 °C yielded blue crystal in 49% yield. Obtained blue crystal was used for sc-XRD 
analysis. 1H NMR (300 MHz, C6D6) δ/ppm = 8.11 (br., ν1/2≈ 200 Hz) 7.49 (br., ν1/2≈ 20 
Hz).

Synthesis of Cr(TBOS)3(TPPO) (III.4t.1) (Synth-2): Cr(OSi(OtBu)3)3(thf)2 (150 mg, 0.15 
mmol) was dissolved in C6H6 (5 mL) giving pale-blue solution. Triphenylphosphine oxide 
(TPPO, 42 mg, 1 equiv.) was dissoved in C6H6 (5 mL) and was added to the solution of 
Cr complex at room temperature. The combined blue solution was stirred for 2 h and dried 
under vacuum, yielding blue-purple powder (89% yield). Recrystallization in n-pentane at 
-30 °C yielded XRD-quality blue-purple crystals. Obtained crystal was used for sc-XRD 
analysis.  1H NMR (200 MHz, C6D6) δ/ppm = 8.52 (br., ν1/2≈ 30 Hz), 6.55 (br., ν1/2≈ 15 
Hz), 1.79 (br., ν1/2≈ 40 Hz)

Synthesis of CrO3(py)2 (Synth-3, Precursor of CrO3(TPPO): CrO3(py)2 was 
synthesized as a precursor of CrO3(TPPO) (VI.4t.6), according to reported procedure19. 
1H NMR (200 MHz, C6D6) δ/ppm = 8.15 (br, 4H, o-py), 6.62 (t, 2H, 3JHH = 6.6 Hz, p-py), 
6.28 (t, 4H, 3JHH = 5.7 Hz, m-py).

Synthesis of CrO3(OPPh3) (VI.4t.6) (Synth-4): CrO3(py)2 (50 mg, 0.19 mmol) was 
dissolved in C6H6 (10 mL) giving red solution. Tiphenylphosphine oxide (54 mg, 0.19 
mmol, 1.0 equiv.) was dissolved in C6H6 (5 mL) and was added to the solution of Cr 
complex, immediately giving a yellowish-orange solution. The mixture was stirred for 3 
min followed by filtration. The liquid filtrate was concentrated in vacuo, and excess 
amount of n-pentane was added giving orange precipitation. The powder was washed 
with n-pentane (2 mL x 3 times), dried under vacuo yielding orange powdery product (61 
mg, 83% yield). Crystallization from benzene solution layered with n-pentane at -30 °C 
yielded orange crystal which was used for sc-XRD analysis. 1H NMR (200 MHz, C6D6) 
δ/ppm = 7.70 (dd, 3JHH = 7.4 Hz, 6H, o-Ph) 7.10-6.90 (m, 9H, m/p-Ph). 13C(1H) NMR (50 
MHz, C6D6): δ/ppm = 132 (o-Ph), 131 (p-Ph), 128 (m-Ph). We could not observe 13C NMR 
signal of Cipso due to the low solubility of the complex. 31P(1H) NMR (81 MHz, C6D6): 
δ/ppm = 30.
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Single-crystal X-ray Diffraction Analysis
X-ray diffraction experiments were performed on a Rigaku XtaLAB Dualflex Synergy-S 
diffractometer equipped with a Rigaku HyPix-6000HE detector using copper (1.54184 Å) 
radiation. Suitable crystals were selected, protected by polybutene oil, mounted under a 
cold nitrogen stream, and datasets were collected at 100 K. The data collection and 
reduction were performed using the CrysAlisPro software, respectively. Structure solution 
and refinement were performed with SHELXT20 and SHELXL21, respectively, embedded 
in Olex222. All non-hydrogen atoms were refined anisotropically.

Figure S8. Molecular structures of (a) Cr(HMDS)2(TPPO)2 (II.4p.5), (b) Cr(TBOS)3(TPPO) 
(III.4t.1), (c) CrO3(TPPO) (VI.4t.6) and CrO3(py)2 with 50% thermal ellipsoids. All 
hydrogen atoms were omitted for clarity. For (d), one of two molecules in a unit cell is 
depicted.

Table S3. Crystal data and data collection parameters for Cr(HMDS)2(TPPO)2 (II.4p.5), 
Cr(TBOS)3(TPPO) (III.4t.1), CrO3(TPPO) (VI.4t.6) and CrO3(py)2

Cr(HMDS)2(OPPh3)2 Cr(OTBOS)3(OPPh3) CrO3(OPPh3) CrO3(py)2

CCDC No. 2386689 2386667 2386690 2386691
empirical 
formula C48H66CrN2O2P2Si4 C54H96CrO13PSi3 C18H15CrO4P C10H10CrN2O3

formula 
weight 929.32 1120.59 378.27 258.20

crystal system Monoclinic Trigonal Monoclinic Triclinic
space group P21/n R-3 P21/n P-1

a, Å 12.5012(9) 21.2744(8) 9.46640(10) 7.94290(10)
b, Å 14.4251(8) 21.2744(8) 18.1713(2) 8.8767(2)
c, Å 14.5268(10) 24.0927(10) 10.2540(2) 15.5630(4)
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αθ, deg. 90 90 90 77.086(2)
β, deg. 110.802(3) 90 104.023(2) 81.771(2)
γ, deg. 90 120 90 86.323(2)
V, Å3 2448.9(3) 9443.5(6) 1711.29(4) 1057.94(4)

Z 2 6 4 4
Dcalcd, g/cm3 1.260 1.1822 1.468 1.621

μ, mm-1 0.436 [Mo-Kα] 0.319 [Mo-Kα] 6.550 [Cu-Kα] 8,871
T, K 100.0 100.0 100.0 100.0

crystal size, 
mm 0.1 × 0.06 × 0.03 0.2 x 0.1 x 0.04 0.2 x 0.07 x 0.02 0.3 x 0.1 x 0.04

2θ range for 
data collection 

(deg.)
4.658 to 68.154 4.74 to 83.32 9.734 to 160.116 5.878 to 159.68

no. of 
reflections 
measured

63911 318438 24826 15226

unique data 
(Rint)

9997 (0.0677) 14379 (0.0879) 3688 (0.0365) 4498 (0.0337)

data / restraint 
/ parameters 9997/0/274 14379 / 0 / 226 3688/0/217 4498/ 0 / 289

R1 (I > 2.0 σ 
(I)) 0.0491 0.0540 0.0482 0.0341

wR2 (I > 2.0σ 
(I)) 0.1386 0.1290 0.1384 0.1102

R1 (all data) 0.0958 0.1249 0.0496 0.0365
wR2 (all data) 0.1799 0.2104 0.1395 0.1126

GOF on F2 1.129 1.211 1.110 0.959
Δρ, e Å-3 0.67 / -0.97 1.69 / -3.71 1.16 / -0.84 0.46 / -0.57

a) R1 = (Σ||Fo| - |Fc||)/(Σ |Fo|)    b) wR2 = [(Σ w(Fo2-Fc2)2)/(Σ w(Fo4))]1/2

Table S4. The list of entries in the vanadium and chromium databases. For each sample 
we report the chemical formula, short name used later in the figures, reference to the 
synthesis protocol (commercial or synth-1, synth-2, etc. methods). Among several options 
available for commercial standards, we tried to choose the most reliable.

# Chemical formula Short 
Name Typea Formal 

charge CN Synthesisb

1 V V.0.8c.1b bulk 0 8 comm
2 V(OSi(OtBu)3)3(OPPh3) V.III.4t.2 mol 3 4 23

3 V(Mes)3(thf) V.III.4t.1 mol 3 4 13

4 V(OSi(OtBu)3)3(thf)2 V.III.5d.1 mol 3 5 23

5 V(acac)3 V.III.6o.2 mol 3 6 comm
6 V2O3 V.III.6o.1b bulk 3 6 comm
7 V(CH2SiMe3)4 V.IV.4t.1 mol 4 4 14

8 V(NMe2)4 V.IV.4t.2 mol 4 4 15

9 V(OSi(OtBu)3)4 V.IV.4t.3 mol 4 4 23

10 VOSO4 V.IV.5y.4b bulk 4 5 comm
11 VO(acac)2 V.IV.5y.2 mol 4 5 comm
12 V2O4 V.IV.6o.1b bulk 4 6 comm
13 VO(OiPr)3 V.V.4t.7 mol 5 4 comm
14 VO(OSi(OtBu)3)3 V.V.4t.8 mol 5 4 23

15 BiVO4 V.V.4t.2b bulk 5 4 comm
16 aNaVO3 V.V.4t.1b bulk 5 4 comm
17 NH4VO3 V.V.4t.6b bulk 5 4 comm
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18 KVO3 V.V.4t.4b bulk 5 4 comm
19 K3VO4 V.V.4t.3b bulk 5 4 comm
20 VO(CH2SiMe3)3 V.V.4t.9 mol 5 4 16

21 Na3VO4 V.V.4t.5b bulk 5 4 comm
22 V2O5 V.V.5y.5b bulk 5 5 comm
23 bNaVO3 V.V.5y.1b bulk 5 5 comm
24 NaV6O15 V.V.5y.3b bulk 5 5 comm
25 Na1.16V2O5 V.IV.5y.1b bulk 4 5 comm
26 (NH4)6V10O28×6H2O V.V.5y.4b bulk 5 5.2 comm
27 Na6V10O28×18H2O V.V.5y.2b bulk 5 5.4 comm
1 Cr Cr.0.8c.1b bulk 0 8 comm
2 Cr(CO)6 Cr.0.6o.1 mol 0 6 comm
3 Cr(O(tBu)2C6H3)2(thf)2 Cr.II.4p.1 mol 2 4 24

4 Cr(acac)2 Cr.II.4p.2 mol 2 4 25, 26

5 [Cr(OSi(OtBu)3)2]2 Cr.II.4p.3 mol 2 4 17

6 Cr(N(SiMe3)2)2(thf)2 Cr.II.4p.4 mol 2 4 17

7 Cr(N(SiMe3)2)2(OPPh3O)2 Cr.II.4p.5 mol 2 4 Synth-1
8 Cr(OSi(OtBu)3)2(tmeda)2 Cr.II.4p.6 mol 2 4 18

9 Cr(OSi(OtBu)3)2(XyNC)4 Cr.II.6o.1 mol 2 6 27

10 Cr(O(tBu)2C6H3)2(XyNC)2 Cr.II.4p.7 mol 2 4 27

11 Cr(OSi(OtBu)3)3(OPPh3) Cr.III.4t.1 mol 3 4 Synth-2
12 Cr(OSi(OtBu)3)3(XyNC)2 Cr.III.6o.1 mol 3 6 27

13 μ-O-(Cr(OSi(OtBu)3)2)2 Cr.III.5y.1 mol 3 5 17

14 Cr(OSi(OtBu)3)3 Cr.III.5y.2 mol 3 5 24

15 Cr(OSi(OtBu)3)3(thf)2 Cr.III.5d.1 mol 3 5 28

16 Cr(OSi(OtBu)3)3(dme) Cr.III.5y.3 mol 3 5 24

17 Cr(OCMe2CH2OMe)3 Cr.III.6o.2 mol 3 6 29

18 Cr(POSS)(thf)3 Cr.III.6o.3 mol 3 6 24

19 Na[Cr(OSi(OtBu)3)4] Cr.III.4t.2 mol 3 4 24

20 Cr(acac)3 Cr.III.6o.4 mol 3 6 comm
21 Cr(CH(SiMe3)2)3 Cr.III.3p.1 mol 3 3 30

22 Cr2O3 Cr.III.6o.1b bulk 3 6 comm

23 K-Kryptofix 
[Cr(OSi(OtBu)3)4]

Cr.III.4t.3 mol 3 4 24

24 Cr(OtBu)4 Cr.IV.4t.1 mol 4 4 24

25 Cr(OSi(OtBu)3)4 Cr.IV.4t.2 mol 4 4 24

26 Cr(CH2tBu)4 Cr.IV.4t.3 mol 4 4 31

27 CrO(OTBOS)3 Cr.V.4t.1 mol 5 4 24

28 Na[CrO(O2CC(CH3)2O] Cr.V.5y.1 mol 5 5 24

29 CrO2(OSi(OtBu)3)2 Cr.VI.4t.1 mol 6 4 24

30 CrO3 Cr.VI.4t.2b bulk 6 4 comm
31 CrO3

c Cr.VI.4t.5b bulk 6 4 comm
32 Na2CrO4 Cr.VI.4t.3b bulk 6 4 comm
33 K2CrO4 Cr.VI.4t.4b bulk 6 4 comm
34 CrO3(OPPh3) d Cr.VI.4t.6 mol 6 4d Synth-4

a bulk: bulk material, mol: molecular material.
b reference numbers for corresponding synthesis are shown. Comm: commercially available.
c removed from the library due to possible contamination with H2O.
d While initially attributed to the 5-coordinated species this compound was finally characterized as 
4-coordinated with only one OPPh3 ligand coordinating Cr.
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6. Acquisition and pre-processing of spectra
Data collection

Experimental Cr- and V K-edge X-ray absorption spectra were acquired at the SuperXAS 
beamline at the Swiss Light Source (PSI, Villigen, Switzerland), operating at 400 mA and 
2.4 GeV. The beamline is equipped with a 2.9 T superbend magnet, Si collimating mirror 
at 2.5 mrad, channel-cut Si(111) quickXAS monochromator, and Rh-coated toroidal 
mirror. XAS spectra of V and Cr reference samples for the library were acquired either in 
transmission mode with 15 cm long ionization chambers or in fluorescence mode using 
solid-state detectors. Air-sensitive samples were sealed in a glovebox prior to 
measurements. 

The series of V K-edge XAS spectra of VOx species in bilayered 5% 
V2O5/15%TiO2/SiO2 were measured in fluorescence mode inside an operando reactor 
[35]. A temperature-programmed reduction (TPR) by ethanol (1.6 vol % EtOH in He 6.0, 
total flow 50 mL/min) was performed in the temperature interval of 100–400 °C with a 
heating rate of 5 °C/min. Prior to the ethanol TPR experiment, a standard pretreatment in 
an oxygen-containing atmosphere (400 °C in an oxygen-containing flow (20 vol % O2 in 
He, 50 mL/min) at a rate of 12 °C/min and dwelling for 1 h) was conducted. Fluorescence 
XAS spectra in operando cell were recorded using a PIPS diode (Mirion Technologies) 
as a detector. The Si(111) channel-cut monochromator was oscillating with a frequency 
of 1 Hz, which corresponds to a repetition rate of 2 scans/s. Prior to each data acquisition, 
the X-ray energy was calibrated by measuring vanadium (for V K-edge at 5465 eV) in 
transmission mode by moving the sample temporarily out of the beam. The intensities of 
the incident and transmitted beam were measured using 15 cm long ionization chambers 
filled with 500 mbar N2 and 500 mbar He.

Radiation sensitive samples were cooled to 100 K and fluorescence spectra were 
measured using PIPS diode (Mirion Technologies) as a fluorescence silicon drift Ketek 
detector. To avoid contact with air, sensitive samples were sealed in a glovebox. Pressed 
pellets with optimized thickness for transmission detection diluted with boron nitrile were 
sealed in two aluminized plastic bags (Polyaniline (15 µm), polyethylene (15 µm), Al (12 
µm), polyethylene (75 µm) from Gruber-Folien GmbH & Co. KG (Straubing, Germany), 
using an impulse sealer inside a glovebox. The outer aluminized plastic bag was removed 
right before the measurement. Powder samples for fluorescence detection were filled in 
quartz capillaries (0.01 mm wall thickness, 0.9 mm outer diameter; Hilgenberg GmbH) 
under inert atmosphere. With the addition of quartz wool, the powder inside the capillaries 
was slightly compressed to exclude particle migration while cooling. The capillaries were 
sealed with Apiezon vacuum grease and wax (M&I Materials Ltd), stored in glass tubes 
under an argon atmosphere, and opened just before measurement. To prevent beam 
damage, three individual spots of 5 minutes each were averaged both for XAS 
transmission and fluorescence modes. 

Preprocessing and alignment
The acquired data were aligned using standard procedures of the IFEFFIT program 
package 32, 33 and further processed by routines of PyFitIt software 34. At the first step, the 
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energy of monochromator was calibrated. The energy alignment of the spectra was 
performed using metal foil of the same element. Background subtraction and 
normalization was performed by means of modified MBACK algorithm 35, 36 implemented 
originally in the Larch package 37. The parameters of polynomial degree were common 
for most of reference spectra and studied catalyst, however some entries in the library 
have higher intensity of the background and required adjustment of energy intervals in 
MBACK for good polynomial fit. The original procedure of MBACK was modified to fit the 
spectrum to the Heaviside function instead of tabulated exponentially decaying absorption 
coefficient. For the background function, a series of Legendre polynomials centered at K-
edge energy were used for approximation of spectra in the post-edge region (50-250 eV, 
m=3 for polynomial order).  The complementary error function was replaced with a 
parabola in the pre-edge region (between -150 and -20 eV), for better stability when only 
a short energy interval was available. To account for the highly non-linear pre-edge which 
often results from Compton scattering in the measurement window of an energy-
discriminating detector, MBACK adds a complementary error function to the polynomial. 
The parameters of the error function are hard to fit when a short energy interval is 
available. For this reason, the quadratic polynomial vanishing at the absorption edge is 
preferable. The smoothness of the piecewise normalized polynomial was provided by 
convolution with gaussian kernel.
The noise level in diluted samples with low metal concentration was reduced by means 
of confidence-based smoothing. We developed this approach to smooth the experimental 
spectra and preserve the features of the spectra. To distinguish peaks from noise the 
algorithm receives noise standard deviation noise level as input. It can be scalar - 
common for all points, or vector. The user also sets the confidence level. Confidence 
Based Smoothing use piecewise polynomial approximation with adaptive piece size, 
which is chosen to meet condition:

erf
𝐸𝑟𝑟𝑜𝑟

2𝑁𝑜𝑖𝑠𝑒𝐿𝑒𝑣𝑒𝑙
< 1 ― 𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒

The algorithm also checks pairs, threes, fours, etc of consecutive error values. If, for 
example, confidence = 0.99 and four consecutive errors are positive and more than 0.04, 
than their joint probability is less than 0.00766. So, these four should be treated as the 
signal, and we have to decrease approximation piece size.
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confidence-based smoothing algorithm: https://github.com/gudasergey/confsmooth
supplementary: https://stackoverflow.com/questions/43700404/curve-smoothing-
preserving-peaks-and-valleys/75950175#75950175

Extracting spectrally pure components from XAS series versus ‘blind’ analysis
The XAS spectra of typical supported metal species are challenging to analyze due 

to a structural heterogeneity (presence of multiple species at once) and overlapping 
XANES features of different species. The analysis can sometimes be facilitated if the 
structure of supported metal species depends on metal loading and applied synthetic 
methods or can evolve under reaction conditions. Such changes can be followed by XAS 
producing a series of XANES spectra, which can then be decomposed into signals of 
spectrally pure components (e.g., via principal component 34, 38 or multivariate curve 
resolution (MCR) analysis) 39. Identifying spectral components partially removes the 
structural uncertainty, ideally leading to pure phases. However, it enormously increases 
the amount of experimental work. In this study, we test two approaches for the analysis 
of the same experimental data. The studied dataset consists of previously reported series 
of V K-edge XANES spectra of bilayered 5% V2O5/15%TiO2/SiO2 containing VOx species 
with sub-monolayer loading, which change their structure (oxidation state and local 
coordination) upon TPR in 1.6 vol % EtOH in He. Within the first approach, we analyzed 
the structure of spectrally pure components resulting from the MCR analysis of the 
XANES spectral series. Based on our previous work, we consider that the spectral 
components are likely pure species. In the second ‘blind’ approach, we analyze each 
XANES spectrum in the series separately, ignoring all preliminary knowledge about the 

https://github.com/gudasergey/confsmooth
https://stackoverflow.com/questions/43700404/curve-smoothing-preserving-peaks-and-valleys/75950175#75950175
https://stackoverflow.com/questions/43700404/curve-smoothing-preserving-peaks-and-valleys/75950175#75950175
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catalyst structure and MCR analysis. This is done to assess the performance of ML 
algorithms and the uncertainty of the structural predictions (See section 3.5 in “Results in 
discussion”).

Pre-edge subtraction algorithm
The calculation of pre-edge peaks by subtracting the contribution of the main edge from 
XANES is done in accordance with the classical technique used in the programs Larch37, 
XANES dactyloscope40. The peaks interval is cut out from the baseline fit interval, and a 
baseline is fitted to the remaining points. The relative strengths of the pre-edge peaks are 
then obtained by the baseline subtraction from the initial XANES spectrum. For baseline 
approximation, the XANES dactyloscope developer uses splines; in Larch, it is possible 
to choose from the Lorentzian, Gaussian, or Voigt shapes, with the optional addition of a 
constant, linear, or quadratic function.
When processing large spectral databases, we encountered the problem of the time-
consuming determination of the optimal fit parameters. A user must manually adjust 
parameters for each spectrum. To automate this process, we worked out a new algorithm. 
For the baseline fit, we use a simple piecewise linear model consisting of two linear 
functions. The first is fitted along the left part of the baseline fit interval with the cut-out 
peak interval, the second - along the right. Linear models make the fitting procedure stable 
with respect to the changes in parameters and the spectrum.
The pre-edge peaks significantly change the neighboring points of the spectrum that are 
used for the baseline fit. This is especially evident for intense peaks and interferes with 
the fit when, due to the shoulder, the right boundary of the fit interval has to be shifted 
very close to the pre-edge peaks. To eliminate the contribution of the pre-edge peaks to 
the spectrum, we fit the relative pre-edge peaks spectrum with a Cauchy function located 
in the center of the peak interval, the height and width of which are selected during the 
fit. Thus, to determine the baseline, we are forced to use some approximation to the 
relative pre-edge peaks spectrum, which led us to the following iterative algorithm:

1) Iterating through all tangents to the spectrum S, we find the best initial approximation 
to the pre-edge peak interval and the relative pre-edge peaks spectrum relPE. As the 
best, we take the tangent with the maximum relative peak area between two consecutive 
tangent points.
2) In the loop:
a) fit the current approximation of the relative pre-edge peaks spectrum with the Cauchy 
function CF in the center of the peak interval
b) subtract the found Cauchy function from the spectrum: S* := S-CF
c) find a piecewise linear approximation LA for the resulting curve S* on the baseline fit 
interval with the peak interval cut out
d) calculate a new approximation to the relative pre-edge peaks by subtracting the 
piecewise linear baseline from the original spectrum: relPE := S - LA
e) return to the step a)

Evaluating the algorithm for the Cr-V spectrum database shows that two iterations are 
already enough to obtain the sufficient baseline approximation. 

Implementation of the LCF algorithm
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For the common fingerprint analysis procedure – linear combination fitting (LCF) – we 
use original implementation, found to be more efficient in cases of multiple components 
fitting with iteration on the reference library. Herein, for the given spectra of the pure 
components μ1(e),…,μn(e) LCF analysis finds concentration c1,...,cn, so that spectra 
mixture c1μ1(e) +… + cnμn(e) fits best the unknown spectrum μ∗(e).

c1μ1(e) + … + cnμn(e) ≈ μ∗(e)

Choice of L2 norm to compare spectra results in the optimization problem:

b

a

(c1μ1(e) + … + cnμn(e) ― μ∗(e))2de  → min
ci:ci ≥ 0,  

n

i=1
ci = 1

 

This problem is closely related to the non-negativity constrained least-squares 41:

K

k=1
wk(c1μ1(ek) + … + cnμn(ek) ― μ∗(ek))2  → min

ci:ci ≥ 0
 

with some grid e0,e1,...eK and weights wk = ek-ek-1, k=1,…,K. To make the sum of the 
resulting concentrations equal to one, we add an extra term to the optimized function:

K

k=1
wk(c1μ1(ek) + … + cnμn(ek) ― μ∗(ek))2 + wK+1(c1 + … + cn) → min

ci:ci ≥ 0
 

with high weight wK+1 = 100*max(w1,…,wK). This NNLS problem we then solve using 
scipy.optimize.nnls function with default parameters.

7. DFT and spectra simulations
DFT and FDMNES calculations settings

We have simulated the possible local environments of V single site on the most energetically 
stable (202) surface of TiO2 (Figure 7), calculating theoretical spectrum for each one (See the 
section 7 in the SI for the details). First, the V atom was embedded in the dangling oxygen bonds 
of (202)TiO2, and resulting geometry was optimized, producing the V(V) structural model. Then 
the V(III) geometry was obtained from it by addition of hydrogen atom in the second coordination 
shell of V and subsequent geometry optimization. 
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Figure 7. (a) Comparison of the simulated spectra V K-edge XANES spectra of V(V) and V(III) 
species with the MCR-1 and MCR-3 and corresponding DFT-optimized structural models of V(V) 
(b) and V(III) (c) species on TiO2 (202) surface. 

The initial configuration (Figure 7b, V(V) DFT model) is described by a short vanadyl bond 
with the length of 1.60 Å and three bonds to lattice oxygens with lengths of 1.76-1.85 Å. To 
simulate vanadium reduction hydrogen atoms terminated two oxygens in the metal first 
coordination sphere. Upon reduction to the V(III) state, VOx-species lose the vanadyl group and 
move closer to the surface, forming additional V-O bonds (Figure 7c), thus explaining the increase 
in coordination number predicted in Table 2. The simulated V K-edge XANES spectra of V(V) and 
V(III) structures produced by DFT show good agreement with the experimental data.

To represent possible local environments of V single site on the TiO2 layer, we pick the 
structure of the most energetically stable (202) surface of TiO2 (Figure 7 of the main text). 
First, the V atom was embedded in the dangling oxygen bonds of (202)TiO2, and the 
resulting geometry was optimized, producing the V(V) structural model. In the next step 
the V(III) geometry was obtained from relaxed V(V) by terminating oxygen atoms in the 
first coordination shell of V with hydrogens and subsequent geometry optimization (see 
the table in section 7.2). All calculations were performed with density functional theory 
using TPSS exchange-correlation functional42 and Slater-type orbitals triple-ζ TZP basis 
set as implemented in ADF2022 software43 with default settings for the SCF and geometry 
convergence. 

For these structures theoretical V K-edge XANES spectra were calculated by 
FDMNES44, 45 code within the full potential finite difference method. The photoelectron 
wave functions were evaluated on a grid of points in a 5.5 Å sphere around the absorbing 
atom with 0.2 Å interpoint distance. To account for the core-hole lifetime broadening and 
instrumental energy resolution, theoretical spectra were further convoluted using the 
arctangent function to model the energy dependence of the Lorentzian width. 

Coordinates of optimized structures 

Table S5 represents coordinates of DFT-optimized V- and III-valent structures from 
Figure 7 of the main text. The data format is inherited from “.xyz” data format: atom type 
as a string, followed by x, y, and z coordinates of atom in angstroms.

Table S5. The coordinates of the V- and III-valent vanadium species on the (202)TiO2 
surface. 
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5-valent structural model 3-valent structural model
V 1.26895 4.712674 5.049403 V 1.144947 4.71778 5.149928
O 1.729942 3.240399 6.058608 O 1.337974 3.247317 6.318072
O 3.849011 2.789861 3.816066 O 3.847499 2.839383 3.776874
H 3.921975 4.78268 11.68657 H 3.944923 4.70949 11.68965
O 3.470585 1.984732 7.411456 O 3.426725 1.923513 7.206416
O -0.3276 4.718986 4.963151 O -0.55309 4.463222 4.533374
Ti 2.017018 2.828292 7.972948 Ti 2.017018 2.828292 7.972948
Ti 3.902518 2.828292 5.615448 Ti 3.902518 2.828292 5.615448
O 2.496761 4.716626 8.213335 O 2.613769 4.725301 8.251858
O 3.884035 4.713276 5.302124 O 3.578187 4.713832 5.400097
O 1.427389 2.986005 9.692438 O 1.360886 3.034563 9.683629
Ti 3.902418 4.713692 3.257798 Ti 3.902418 4.713692 3.257798
Ti 2.017048 6.599322 7.972648 Ti 2.017048 6.599322 7.972648
Ti 2.017048 4.713822 10.33015 Ti 2.017048 4.713822 10.33015
Ti 3.902548 6.599322 5.615148 Ti 3.902548 6.599322 5.615148
O 5.787918 2.828192 5.998048 O 5.787918 2.828192 5.998048
H 6.409756 4.303544 3.51376 H 6.222945 3.839931 2.858967
O 3.816501 6.64042 3.820037 O 3.808885 6.551306 3.766449
O 5.788048 4.713822 2.874898 O 5.788048 4.713822 2.874898
O 1.733844 6.189045 6.064734 O 1.323185 6.182565 6.304413
H 5.966275 6.756522 6.94686 H 5.93516 6.866581 6.926878
O 3.467204 7.443726 7.427567 O 3.423259 7.500969 7.198345
O 1.40781 6.421892 9.706575 O 1.365033 6.405206 9.680892
H 5.973726 2.682464 6.946162 H 5.937517 2.588799 6.933349
O 3.902448 4.713722 10.71332 O 3.902448 4.713722 10.71332
O 2.016948 4.713722 12.30532 O 2.016948 4.713722 12.30532
O 5.787948 6.599222 5.998318 O 5.787948 6.599222 5.998318
H 1.423805 5.345228 12.75473 H 1.156245 4.713853 12.76536
O 1.940096 4.693537 3.424163 O 1.864799 4.698179 3.228048

H -1.14455 3.945417 5.109757
H 1.269637 4.133632 2.699866
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