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Abstract: During the steel pipeline installation, special attention is paid to the butt weld control
performed by fusion welding. The operation of the currently popular automated X-ray and ultrasonic
testing complexes is associated with high resource and monetary costs. In this regard, this work is
devoted to the development of alternative and cost-effective means of preliminary quality control of
the work performed based on the visual testing method. To achieve this goal, a hardware platform
based on a single board Raspberry Pi4 minicomputer and a set of available modules and expansion
cards is proposed, and software whose main functionality is implemented based on the systemic
application of computer vision algorithms and machine learning methods. The YOLOv5 object
detection algorithm and the random forest machine learning model were used as a defect detection
and classification system. The mean average precision (mAP) of the trained YOLOv5 algorithm based
on extracted weld contours is 86.9%. A copy of YOLOv5 trained on the images of control objects
showed a mAP result of 96.8%. Random forest identifying of the defect precursor based on the point
clouds of the weld surface achieved a mAP of 87.5%.

Keywords: computer vision; machine learning; nondestructive testing; technologies and systems;
material surface reconstruction

1. Introduction

Pipelines are essential strategic transport arteries for all countries around the world
and play an important socioeconomic role for large energy and chemical companies. Within
the framework of small subjects of states, pipelines serve as an integral tool for delivering
critical natural resources and coolant to the final consumer: citizens. This type of transport
has practical advantages, including environmental friendliness, the ability to operate
under adverse weather conditions, the continuity of the resource delivery process, and
optimization of the workload of the remaining modes of transport [1]. Pipelines are widely
used today for the transmission and distribution of the most popular energy resources, such
as gas and oil products, and for modern, promising, and more environmentally friendly
initiatives, such as coal water slurry [1–3]. Restrictions imposed on the use and development
of transport pipeline networks in some countries can significantly reduce general trends in
developing the country’s technological and socio-economic potential [4]. Important aspects
of the construction of such networks are the planning of their placement, the settlement
of legal aspects of the construction of engineering structures, the quality control of the
pipeline installation, and the compliance with all related bylaws and standards [1,5].

The primary materials for the installation of pipeline lines are steel, plastic, and
propylene. Although each option has its advantages and disadvantages [6,7], the majority
of popular choices for most of the networks currently under construction are steel. One of
the most vulnerable places to install steel pipelines is the joint surface, which is made using
welding technologies. Nondestructive testing methods (NDT) [8] were recently widely
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used to perform visual quality control checks of the surface of welded seams. The main
nondestructive testing methods of the pipeline welded surface according to Table 341.3.2 of
ASME B31.3-2004 [9] are visual inspection, liquid penetration inspection, magnetic particle
testing, radiographic inspection, ultrasound testing, and eddy current testing. According to
the data presented, the most effective method to recognize most weld imperfections is the
radiographic method; however, visual evaluation allows you to identify approximately 70%
of the types of defects. Based on the international standards ISO 5817:2014, ISO 6520-2:2013,
and ISO/FDIS 9712-1999 in fusion welding parts, we can extract the key features of steel
pipeline weld surface inspection and highlight the required list of defect detection accuracy.

There are many software and hardware systems and technologies for implementing
methods for the nondestructive testing of girth welds in pipelines [10,11] that meet the
requirements of the standards listed above. Radiographic and ultrasonic examination
methods gained the greatest popularity [8,12]. However, both approaches are quite resource
intensive. The high cost of equipment or consumables, significant time costs, and personnel
qualifications are key factors that slow the pipeline construction process by contractors
performing installation work. During pipeline line commissioning, licensed and accredited
NDT laboratories are involved, which significantly guarantees the safety of the installations.
In this case, the use of expensive equipment is fully justified. However, conventional
contractors often require an affordable and sufficiently accurate means of assessing possible
weld defects for a preliminary assessment of the quality of the steel pipeline being laid.
Another important aspect of implementing control methods is their automation, which
will significantly reduce resource costs during the construction process and ensure the
optimization of the staff during line installation. Since the use of ready-made defect
templates, industry standards for the enterprise do not provide high accuracy in defect
assessment. The participation of an expert in the interpretation of sound spectra or X-ray
images requires considerable time, considering the human factor, which does not always
have a positive effect on the construction process: new methods are needed for decoding
and classification of defects of the control object. Researchers are increasingly paying
attention to the use of artificial intelligence technologies, which, together with sources of
sensory perception of information about the progress of the welding process, allow the
implementation of highly efficient algorithms for determining defects in the test object.
First, we will highlight several stages to conduct circumferential weld inspections. A
preliminary assessment is carried out directly during the construction process to obtain the
minimum necessary to confirm information for the continuation of work. The next stage is
the primary check, carried out before commissioning of the pipeline transport network. The
final stage is a set of measures for the maintenance and inspection of pipelines in operation,
among which are the methods of in-line inspection, such as magnetic flux leakage control
(MFL), ultrasonic testing (UT), electromagnetic acoustic technology (EMAT), and eddy
current testing (EC) [13].

In the further article text, an existing solutions mini-review will be presented, materials
and methods will be identified, data preparation issues will be considered, the study main
results will be analyzed, discussion will be held, and a conclusion will be made.

2. Existing Solutions Mini-Review

In this paper, we focus on the preliminary assessment stage of the visual control of
the surface of steel pipeline girth welds. Thus, we considered several studies that allow us
to determine the current state of the problem with respect to the implementation of deter-
mining defects regarding the most popular methods of NDT. For example, the paper [14],
due to a detailed review of existing technological solutions, demonstrates the applicability
of individual artificial intelligence methods and their advantages and disadvantages in
organizing a defect classification system during the ultrasonic and radiographic studies
of test objects. There are approaches to the analysis of radiographic images in which the
authors proposed a hybrid approach that combines deep learning (DL) models based on
the use of the AlexNet network and autoencoders. For example, these are artificial immune
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systems (AIS) [15]. According to the information provided by the authors, this approach
makes it possible to significantly improve the accuracy of determining weld defects relative
to the separate use of the indicated methods. The study [16] involves the initial extraction
of the weld area from the radiographic image, which is analyzed using the traditional
approach of extracting signs of a defect, such as threshold segmentation. In the future, it is
planned to use the support vector machine (SVM) to detect blocks with defects. As a result,
the authors determined the high classification ability of SVM, but noted the sensitivity of
the results of applying this method relative to the original training datasets. Some research
is focused on a more comprehensive approach to solving the problem, so in [17], a detailed
description of the method is given to study weld defects using layered ultrasound arrays.
The authors fully worked out the theoretical and practical aspects of the application of this
method, including industrial use. The prospects for the use of automated ultrasonic testing
(AUT) are outlined, and the results of multivariate analysis using principal component
analysis (PCA) are presented. Some researchers are already concentrating their efforts on
the development of existing methods and results. Thus, in [18], the authors define the
procedure for X-ray image verification by qualified specialists and the need to automate this
procedure. The study above used DL and transfer learning (TL) technologies based on pre-
trained deep convolution neural network models and a comparison of deep convolutional
activation functions (DCFA). There are approaches to detect defects in steel pipeline welds
based on the use of computer vision and machine learning algorithms. For example, in [19],
the authors used the YOLOv5 algorithm and compared it with the two-stage algorithm
to detect objects, Faster R-CNN. It should also be noted that the imaging setup in this
study was a real-time X-ray imaging system consisting of a movement mechanism for the
test tube, an X-ray machine HS-XY-225, a high-speed digital detector PS1313DX, and an
image capture card [19]. In [20], attention was mainly paid to the detection of defects in the
welds based on the localization of the defect by applying morphological filtering, further
specifying the type of defect using a convolutional neural network (CNN) and the defect
zone using SVM. Separate lines of research include the analysis of magnetic flux leakage
imaging (MFL) images, where a gradient coincidence matrix (GGCM) was proposed as
a defect recognition tool [21]. In some cases, to extract information on the presence of a
defect from radiographic images, the Faster R-CNN algorithm is used, where the authors
identified two extractors of internal features and evaluated their effectiveness in [22]. In
general, the use of various types of images and spectra of sound sequences is one of the
most sought-after areas of research in this area. Thus, the paper [23] reviews possible
approaches to the analysis of X-ray and infra-red images of test objects and methods to
determine defects based on the use of acoustic emission sensors and ultrasound. Although
the study [24] is more focused on monitoring and analyzing the quality of the welds during
pipeline operation, it allows you to get a description of such inspection methods, as the use
of a three-axis high-definition MFL detector, an in-line ultrasonic crack detector, and the
structure of an embedded detector with EMAT. In addition, we disclose the applications
of technologies for electromagnetic eddy current testing and the verification of field mea-
surements of alternating current (ACFM). The studies carried out in work [25] confirm the
high efficiency of using the radiographic verification method under various conditions and
allow the extraction of comprehensive information on welding equipment, the welding
process, and the acceptable deviations in the evaluation of defects. Automatic systems
that classify defects in steel pipe girth welds based on radiographic images using various
machine learning models are the main proposal for the implementation of quality control
verification in the installation work performed by welders. Thus, in [26], it is proposed to
use the KNN and SVM methods to determine linear defects in pipeline welds. Such an
integrated approach, according to the results obtained, guarantees an increase in the clas-
sification accuracy. In the study [27], the TL technology was implemented in conjunction
with CNN. Here, traditional image processing techniques (IPT) were used to preprocess
radiographic images. Descriptors extracted from the GDXray database using VGG16 and
ResNet50 were used as data in the training sets of classifiers. The authors used random
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forest, support vector machine, and logistic regression as classification models. Regarding
the results obtained, the authors present data on the increase in productivity and the high
accuracy of these methods. Some studies offer alternative approaches to the calculation of
weld defects, for example, the use of coarse set theory to create a classification system [28]
or the implementation of linear control methods based on data management [13].

Based on the above information, we can conclude that the main methods of the non-
destructive testing of girth welds of steel pipelines today are radiographic and ultrasonic
testing methods. Furthermore, the wide possibilities of artificial intelligence methods offer
an extensive toolkit for automating the identification and classification of possible defects
in control objects. However, the purpose of this work is to create a simple and economical
means of preliminary assessment of the quality of the installation work. In this study, a
control system based on a visual inspection method is proposed, which in any case will not
be able to recognize all types of weld imperfections. However, this tool will be able to detect
in advance about 70% of violations of the weld manufacturing process, including cracks,
lack of fusion, incomplete penetration, surface porosity or inclusion of exposed slag, surface
finish, concave root surface, weld reinforcement, or internal protrusion, which in most
cases guarantees increasing the efficiency and quality of work by contractors performing
the installation of pipelines.

3. Materials and Methods

We chose a Raspberry Pi4 single-board computer as the main node to collect, broadcast,
and preprocess visual information to develop the proposed software and hardware tool to
inspect pipeline weld surfaces. This choice was based on the availability of the board, its
low power consumption, extensive plug-in and expansion card capabilities, the presence
of a built-in wireless module, and adequate performance for computing procedures and
imaging research experience [29–33]. Since our project involves the connection of two
camera modules to be able to build a depth map of the surface of the control object and an
inertial measurement unit to determine the location and spatial orientation of the video
information acquisition device, there was a problem with the presence of only one scalable
coherent interconnect (SCI) port.

This problem is proposed to be solved using a perfectly suitable IVPort V2 Raspberry
Pi Camera Module V2 multiplexer [34]. This option allows you to connect to four camera
modules simultaneously, which is essentially a hub from one SCI port to four. The main
disadvantage of this board is the decrease in framerate for each of the connected cameras,
since data capture is available from only one source connected through this board at a time.
Since this board also has limitations on possible camera plug-ins, we chose the Raspberry Pi
Camera Module V2 with 8MP SONY IMX219 sensor. The equivalent focal length of 33 mm,
a sufficient lens aperture, and a wide range of supported video formats make it possible to
use these modules in our project. The spatial orientation of the device is determined and
assumed using the Kootek GY-521 MPU-6050 IMU modules for Raspberry Pi that operate
on the IIC protocol with a built-in 16-bit AD converter. As a means of providing location
data, the equipment is planned to use an L80-39 GPS module with a L80-39-based USB
interface. The hardware platform is powered by another Raspi UPS HAT lithium battery
expansion board, with 3.7 V specifications and a capacity of 2600 mAh. This reserve will
allow the hardware of the proposed tool to operate for about two hours. The equipment
connection diagram is shown in Figure 1. The circuit development was carried out with a
cross-platform software package of the electronic design automation (EDA) class. It was
also used to develop circuit diagrams and layouts of printed circuit boards.
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Figure 1. Connection diagram for Raspberry Pi4 modules and expansion boards.

Since it is supposed to study the girth welds on different diameters of pipes, the
mechanical parts of the hardware platform suggest the possibility of adjusting the relative
position of the cameras close to the object. The placement of onboard equipment requires
the presence of a trolley with the possibility of uniform movement along the surface of
the pipe. Transmission of preprocessed data to the user’s workstation is carried out by
organizing the direct connection mode (ad hoc).

The methods implemented that are used in the development of the software part of
the tool for diagnosing pipeline welds can be conditionally divided into several stages. The
initial stage of the operation of the diagnostic tool is devoted to the collection of several
data streams, including geolocation (data from the IMU and GPS module) and video data
streams. Using the data received from the GPS module, a geotag is formed about the
position of the pipeline joint diagnostics. This information will be used to generate a unique
ID for each of the measurements. In addition, in the future, it will be possible to trace the
control checks carried out on a digital map. Since, in our case, there are limitations to the
possibility of synchronous video capture, the parameters of the initial video stream will
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be a resolution of 640 by 480 pixels at a frame rate of 15 frames per second. Since each
module will perform the recording in turn, it is required to compare the frames of the
video recording made by one module relative to another. When switching video recording
channels, the delay is up to 1 s, which in some ways imposes restrictions on the speed
of movement of the inspection tool trolley along the pipe surface. In our case, the IMU
is needed to find the central shooting positions of the girth weld, which are sequentially
different from each other by 45◦, starting the report relative to the vertical axis of symmetry
of the pipe. Time ranges are required to converge IMU readings with intermediate video
recording measurement values, where the data stream from the measurement IMU is
matched with the timeline of the measurement being performed, and then the required
time values are extracted at the measurement control points. The time values obtained
are then used to select and extract the appropriate keyframes from the video data streams,
assigning a measurement position number. Direct extraction of frames from a video is
performed and they are saved in an image file; then, a set of FFmpeg libraries from the
Python procedural language is used. The effect of the impact of the encoder used in this set
of libraries was determined in [35]. The name of the image file is derived from the number
of camera modules, the measurement location, and the coordinates at a given time. Thus,
in the output of this stage, we received two sets of image data, eight attachments each,
where the file name contains additional information necessary for further use. The next
step is to pre-process the image data files themselves. This section contains introductory
material on the data preprocessing procedures. We will look at this in more detail in Data
Preparation. In our case, the resulting visual data sets will be used in the future to solve
two problems, the first is to identify and classify defects in the pipeline weld, the second is
to make a three-dimensional reconstruction of the surface of the object under study with
a color indication of areas with imperfections. Consequently, for each of the tasks to be
solved, the preprocessing methods will differ. Since the measurement process does not take
place under ideal conditions of illumination of the surface of the test object and there is a
presence of extraneous noise in the image, it is proposed to use the median filter algorithm.
The application of this approach can significantly improve the visual representation of the
image while eliminating a significant amount of noise and equalizing the brightness of
each image pixel [36].

The software implementation of the procedure for restoring the images obtained
during the collection of information was performed using the OpenCV library in the
Python programming language. Next, to implement the system used to classify weld
defects, the resolution of the images in the studied sets was reduced. When designing a
system to detect and classify defects in steel pipeline welds based on the nondestructive
visual testing method, we noticed that most of the deviations depended primarily on the
morphological properties of the object under study in the image. Therefore, an integrated
approach to solving the problem was considered. Morphological characteristics were best
demonstrated first by images of radiographic inspection of welded joints. In our case, the
attribute space of such data sets is redundant, since, in addition to surface defects, they
describe internal imperfections of welded joints. However, we discovered the possibility
of extrapolating the results of the intellectual analysis of sets of radiographic images for
the reliable identification of weld defects based on the visual method. Data sources for
the study were the public radiographic image dataset GDXRay+ [37] and the radiographic
and visual image datasets provided by LLC «Cyber Vision». YOLOv5 [38] was chosen
as an algorithm to identify weld defects in images due to mosaic processing of graphic
data, which allows qualitative extraction of features characterizing small rigid objects. The
general network architecture used by YOLOv5 is shown in Figure 2.
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The main large parts of YOLOv5 are backbone, neck, and head. The first one extracts
and forms image features with different detail levels. The next one is used for feature
aggregation. The last makes predictions based on features from the neck. For backbone used
Cross Stage Partial DarkNet53 (CSP DarkNet) with spatial pyramid pooling. This serves
to increase the receptive field at separating features without compromising performance.
For the neck, the PANet solution is used, which provides an adaptive pool of features
connecting the mesh with all levels of features, for uniform propagation in the following
steps. The Yolo layer in the head implements dense prediction for a one-stage detector type.
In general, the choice in favor of YOLOv5 was also made on a few considerations. Thanks
to CSP DarkNet, this algorithm has high speed and accuracy of inference. PANet allows
for more efficient low-level feature propagation, and the dense prediction layer makes
it possible to implement a multiscale prediction, which is quite useful for the condition
of various morphological characteristics of weld defects. In addition, in the study [19],
the authors carry out comparative tests on a number of approaches to one-stage and two-
stage detection, where YOLOv5 showed excellent results. It is especially worth noting the
superiority over Faster R-CNN in terms of speed, accuracy, and final weight of the model.
Based on the data used in [19], we considered it possible to extend their experience to our
study. The ability to detect and classify in real time, the low weight of the trained model, the
speed and issuing efficiency of the predictions, the simplicity of data labeling, and training
make YOLOv5 an advantageous candidate for solving our problem. This algorithm was
trained twice. In the first case, a Gaussian blur with a radius of 5 was applied to the sets of
radiographic images, and the edges of the objects were extracted using the Prewitt operator.
Additionally, we made changes to the data labeling by eliminating hidden defects that are
inaccessible to the visual method of control. The resulting modified data sets were used
to train YOLOv5, where the contours of the test objects extracted from conventional weld
images using the same Prewitt operator were used as a test set. In the second case, data
characterizing surface defects were selected from the sets of radiographic images and the
model of the YOLOv5 algorithm was trained, which was further trained on the labeled
data of ordinary images. This was done on the basis that there were about 8000 examples
of radiographic images, divided into 6 classes of welding defects, and there were about
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1500 ordinary images, which could not guarantee a confident prediction of the presence of
a defect in itself. In the process of shooting controlled seams with two cameras, we restored
the depth of objects; a general view of this procedure is shown in Figure 3.
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To reconstruct the depth map, algorithms for searching for local features in images
were used, since the algorithms for searching for global matches are more computationally
expensive, and this contradicts the proposed concept of the approach. The depth maps
obtained were converted to point clouds on the surface of the welded joints of steel pipelines.
The extracted point cloud data were used to detect and classify weld defects at the level
of their morphological characteristics. For this, a modified method was used with further
analysis based on the random forest model [39–41]. We implemented and developed the
procedure for the three-dimensional reconstruction of the surface of the pipeline weld.
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Because of the shooting of images is performed in key positions, there are overlap
zones (repeating visual information in two images) and distortions of the weld geometry
relative to the shape of the object under study; when merging eight images of the weld,
it is necessary to refine the overlap zones and correct the shape of the weld on the image.
Standard tools provided by the OpenCV library were used to implement the image splicing
procedure in software. After obtaining two spliced images relative to visual data sets from
two multidirectional camera modules, it is required to build disparity and depth maps.
Next, we use the software implementation of the computer vision algorithm, efficient large-
scale stereo matching [42]. Based on the results of third-party research conducted in other
areas [43], quite good results are guaranteed in our case, with relatively low complexity of
implementation. After obtaining disparity and depth maps, it becomes possible to build an
red, green, blue, depth matrix (RGBD) for the image of the weld. Then, using geometric
arguments, we implement the process of converting the screen coordinate system to a
Cartesian coordinate system. This idea was born from the reverse engineering results
presented in [44]. However, despite obtaining a point cloud of the weld surface, it is worth
recalling the geometry of the test object, the pipe, of which, as a result, the three-dimensional
reconstruction should be a three-dimensional ring. We used the values of the radius of the
curvature of the pipe relative to the size of its diameter as a correction factor that increases
with each step for the location of each cloud point in the Cartesian coordinate system. Then,
the reconstruction of the surface mesh [45], with respect to the coordinates of the point
cloud, is assumed. The software implementation of this procedure was performed through
a convolutional neural network with an integrated voxelization graph (LV-GCNN) [46],
which allows reconstructing the surface without visible losses. The resulting digital model
is then divided into sections according to the initial shooting positions.

4. Data Preparation

In this study, a total of four initial datasets were used. This is a public GDXRay data set,
or rather, a part of it containing X-ray images of welded joints. A set of weld radiographic
images (8000 images) and a data set of weld photographs (1500 images) were provided
by Cyber Vision LLC. In addition, we collected a dataset of point clouds of steel pipeline
weld surfaces (100 surfaces). In addition, on the basis of existing sets of graphical data, a
set was created that contains images of the extracted contours of the welds. In the process,
all datasets were labeled or relabeled and pre-processed.

We selected two data preprocessing scenarios based on the problems of detection and
classification of defects and the three-dimensional reconstruction of the surface of the test
object. As part of the first procedure implementation, images of two types were used: the
usual visual and radiographic representations of the test object. The radiographic images
were subjected to a Gaussian blur procedure with a 5 radius and further extraction of the
edges of the objects in the image using the Prewitt operator. The results of this processing
are shown in Figure 4.

For processing graphic materials of visual data sets of weld images, the methods used
in our case can be divided into setting the basic resolution, filtering (noise removal and
brightness equalization), segmentation, and color space transformation. A resolution of
224 × 224 pixels was defined as the reference resolution for sample images. For this,
software procedures for cropping frames and reducing their resolution were implemented.
At this point, image data pre-processing procedures were suspended in favor of markup.
The marking of the images was completed manually by an expert experienced in the visual
assessment of weld seams. The procedure for labeling images of welds was carried out
using the LabelImg software, which has a clear graphical interface and wide functionality
for marking data sets. In the process of marking these images of welded seams of steel
pipelines, we were guided by two international standards, in particular ISO 5817-2021 and
ISO 6520-2-2021.
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Based on the standards considered, six main types of welding defects and their
descriptors were identified for the implementation of the visual method of nondestructive
testing. The identified types of defects include: (1) cracks; (2) cavities; (3) solid inclusions;
(4) non-fusion; (5) form defects; and (6) other defects. Examples of marking images of
welded seams of steel pipelines are shown in Figure 5.
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At this stage, the first set of visual data was formed, characterizing the defect area of
the test object based on the color space of RGB images, which is useful for identifying such
defects as, for example, inclusions.

For better detection of other types of defects, it is necessary to highlight the most
informative features of visual data. For this, three stages of preprocessing graphic data are
proposed. All procedures for pre-processing image data are shown in Figure 6.
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Figure 6. Stages of preliminary processing of image data.

In the first stage, the image color space was converted to grayscale. This procedure was
implemented using the multiparadigm Python programming language and the scikit-image
library. The next step was dedicated to segmenting the image to highlight the contours of
the weld against the background of the steel pipe. For this, a spatial filtering method based
on a sliding mask with a dimension of 3 × 3 pixels was applied, and a Gaussian blur with
an intensity of 3 was previously used to eliminate excess noise. The coefficients of the mask
square matrix were determined using the Prewitt operator. After successful selection of the
weld contour, blurring of the image background was applied using the Gaussian function
and an intensity of 10. Examples of the images obtained are shown in Figure 7.
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Figure 7. Examples of preprocessed and labeled image data.

The second scenario does not include reducing the resolution of the original image, but
implements the procedure for merging all images within each of the two sets. The Random
Sample Consensus (RANSAC) and Scale-Invariant Feature Transform (SIFT) algorithms
were used for image splicing, which reveal local features with which you can check the
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similarity of the original images in the set. In addition, we used the SIFT algorithm to
calculate and represent the three-dimensional surface points of the testing object based on
two spliced images. The pseudocode for the software implementation of this function is
given in Algorithm 1.

Algorithm 1. Calculation and presentation of points of a three-dimensional controlled
object/procedure CalculatePointCloud(imgL, imgR).

INPUT: Two images of calibrated cameras
OUTPUT: Point cloud
imgL:= ConvertColor(imgL, GRAY)
imgR:= ConvertColor(imgR, GRAY)
keypoints_1:= SiftDetectAndCompute(imgL)
keypoints_2:= SiftDetectAndCompute(imgR)
keypoints_1, keypoints_2:= Match(keypoints_1, keypoints_2)
F:= FindFundamentalMat(keypoints_1, keypoints_2)
pointCloud:= Triangulation(F, keypoints_1, keypoints_2)
return pointCloud
end procedure

Additionally, within the study framework, an approach was proposed and imple-
mented to assess the defectiveness of the welds based on the analysis of a cloud of points on
the surface of the test object using random forest. To do this, point cloud data was collected
using the Intel Realsense D435i intelligent sensor camera, followed by the extraction of
the required values from the bag file. It was these data that were used later to train the
random forest. The real test data sample was formed by algorithmic processing of two
video data streams and the subsequent transformation of the obtained depth maps into
point clouds. A fragment of the structure of the received point cloud data is shown in
Table 1, and the raw data and other open results of the ongoing research are available in the
public repository of projects at the link: https://github.com/cybervllc/real_soft (accessed
on 22 July 2022).

Table 1. Data structure of the point clouds of the weld surface of the steel pipeline.

x y z nx ny nz Red Green Blue Alpha

0 −0.27675 2.1516 3.5621 4.520603 4.28289 3.83560 20 47 103 255
1 −0.27750 2.1557 3.5664 4.749300 3.10760 3.18440 36 35 96 255
2 −0.28250 2.1602 3.5701 3.159200 2.98990 4.15230 45 51 110 255
3 −0.28900 2.1697 3.5709 4.062900 4.11780 2.99978 23 49 99 255
4 −0.28947 2.1697 3.5718 4.131200 4.56719 4.36810 19 37 106 255

Marking of these point clouds was carried out by selecting a sequence of points
belonging to the defective zone of the weld or defining other morphological characteristics
that do not meet the requirements of the international standards in this area. As a result,
each investigated weld fragment had 11,000 to 13,000 points, and the average number of
points to describe the defective zone was in the range of 1500–2000 points from the entire
fragment array.

5. Results

The proposed approach to assessing the defectiveness of a weld based on processed
video data streams is to implement a deliberative procedure of three trained machine
learning algorithms, including YOLOv5 to identify anomalous contours of objects, YOLOv5
to detect defective zones in images of a weld, and random forest to analyze spatial data
point clouds of the surface of the welded joints of steel pipelines. The deliberative procedure
basis is the principle of two of three. This means that at least two of the three algorithms
must detect a defect in the object under study, even if they identify a different type of

https://github.com/cybervllc/real_soft
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deviation. The training of all test models took place on a stand that included a discrete
adapter Nvidia Quadro RTX8000 with a memory capacity of 48 GB, an Intel Xeon E5-4655
v3, and 128 GB RAM with the Linux Ubuntu 18.04.6 operating system on board. To train
the YOLOv5 first case, the hyperparameters set given in Table 2 was used.

Table 2. Values of YOLOv5 first case hyperparameters during training.

Parameter Meaning

Number of epochs 50
Batch size 64
Learning rate 0.01
Momentum 0.937
Weight decay 0.005
Image caching Yes

The results obtained during the first computer vision algorithm training to detect
defects based on the image contours of a steel pipeline weld are presented in the graphic
materials below in Figure 8. Here, Figure 8a shows a correlogram of ROI labels, which
is a group of two-dimensional histograms showing pairwise projections of the data axes
according to the “each with each” principle. Figure 8b contains information about the
distribution density of image labeling parameters relative to all available classes. The
confusion matrix of first case YOLOv5 is given on Figure 8c. The upper row Figure 8d
shows the model training metrics. Specifically, in order, root mean square error (RMSE),
binary cross-entropy, entropy, precision, and recall. The bottom row Figure 8d shows the
same set, only for model validation.

Additionally, for a qualitative result obtained from the examination, we collected
pairwise graphs of the dependence of the quality metrics of the algorithm used, such as
precision, recall, f1, and confidence (Figure 9).
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This result allows us to assert the high accuracy and stability of the work of this
algorithm. The training of the second copy of YOLOv5 took place in two stages. At the first
stage, the algorithm was pretrained on radiographic control images. At the second stage, it
was further trained on preprocessed and marked images of welded steel pipes. To train the
YOLOv5 s case, the hyperparameter set given in Table 3 was used.

Table 3. Values of YOLOv5 s case hyperparameters during training.

Parameter Meaning

Number of epochs 25
Batch size 64
Learning rate 0.01
Momentum 0.937
Weight decay 0.005
Image caching Yes

The final metrics to train the algorithm and the quality of the model are given below.
The Figure 10 structure is identical to the Figure 8 structure, except that it contains an
evaluation of the YOLOv5 second case.

In addition, as in the first case, graphs of mutual dependencies of the metric indicators
of the model used for its characterization were prepared (Figure 11).

In addition to these algorithms for the detection and identification of defects in welded
joints, an approach based on the analysis of the obtained point clouds of the object surface
under study was used. Strictly speaking, we determined each point potential from the set
belonging to a possible defect using the random forest algorithm. In this case, the point
clouds belonging to surface defects and described above served as the initial data set. This
approach concept is as follows: we consider independently each point from the points
cloud corresponding to the one-object measurement and present the probability that this
point belongs to one of the six defects. Next, we integrate the number of points that belong
to the same defect in the areas of the surface under study, having previously clustered them.
If the checksum of the number of points per potential defect exceeds the threshold value,
the system determines this as a precursor of a weld defect. Since we know in advance the
geometry of the control measurements and the survey scale, the values of the threshold
values of the control sums were chosen on the basis of the average geometric dimensions
of real defects and are unique for each type of defect. Data on the training and testing
processes of the random forest algorithm are shown in Figure 12.
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As a result, we prepared and trained three algorithms, YOLOv5 to detect defects
based on images of weld contours with an mAP@0.5 value of 86.9%, YOLOv5 to detect
defects in welded joints based on images of the test object with an mAP@0.5 value of 96,
8%, and random forest to detect the belonging of individual points from the cloud to defect
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areas with mAP@0.5 of 87.5%. These indicators cannot be directly interpreted to assess
the quality of the defect detection and classification system. Therefore, in the discussion
paragraph, we describe the full-scale experiment we conducted to assess the quality of the
system operation.

6. Discussion

During the study and assembly of the prototype, we identified limitations in the use
of the proposed software and hardware platform for the implementation of the visual
inspection of girth welds in steel pipelines. Among them are the limitations determined
by the very procedure for checking the quality of the work performed, which consist of
the range of diameters of the investigated pipes and the need for a uniform movement of
the trolley with on-board equipment along the surface of the object under study at a low
speed. The main disadvantage of the proposed approach is an incomplete list of the types
of defects identified. However, this method of nondestructive testing does not involve
the determination of such defects as internal porosity, internal slag inclusion, tungsten
inclusion, or elongated indication and undercutting. Determining these types of defects
certainly plays an important role in the safer operation of the pipeline line; however, it
requires the implementation of expensive and resource-intensive methods; therefore, in
the context of this work, we present our result in the field of a preliminary assessment
of installation work performed directly in the construction process. The hardware of the
proposed monitoring tool is characterized by the low cost of the individual components,
which guarantees their easy replacement in case of failure, and low power consumption,
which guarantees low installation dimensions with sufficient battery life. The software
implements a system to determine and classify defects, as well as generates final reports
on the inspection carried out with a three-dimensional reconstruction of the weld surface
under study. It is based on a set of methods and approaches tested by other researchers,
with the introduction of the authors’ corrections regarding the problem being solved and
the area of research under consideration. The use of computer vision algorithms, machine
learning models, and neural networks makes it possible to organize a procedure for the
automated detection of defects in the test object with sufficient sensitivity and accuracy,
which contributes to the application of this tool in practice. Based on the results of this
study, 100 full-scale experiments were carried out to control the quality of welded joints
with the involvement of a human expert from a certified laboratory of nondestructive
testing methods. All experiments were carried out in clear sunny weather during the first
half of the day at one site of installation working on laying a gas pipeline. As a result, the
expert identified two serious violations of installation technology, which cast doubt on the
possibility of further operation of the line with the assignment of the required category
of the facility, and about seven minor defects that allow further use of the pipeline. The
system identified approximately ten cases of violations in the production of pipeline welds,
two of which were classified as potentially dangerous by the expert, and four that were
classified as minor. The expert marked the remaining four detections as false positives; in
addition, he noted three not considered by the system. Unfortunately, at the time of writing
this article, there were no other objects for nondestructive testing of butt joints of steel
pipelines in the work of LLC «Cyber Vision», and we were unable to expand the statistical
sample of the actual system performance.

7. Conclusions

In, the proposed study several results were obtained. We assembled a working proto-
type of a hardware platform based on Raspberry Pi modules and expansion boards. Several
scenarios for data preprocessing and training sets formation were proposed and success-
fully implemented, allowing extrapolating, and at some stages, the available X-ray images
of welds to detect and classify defects based on extracted frames from a conventional
video sequence of the visual nondestructive testing method. To implement the system for
detecting and classifying defects, the application of the system of computer vision algo-
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rithms and the machine learning model was chosen, which provides the prediction fusion
at the deliberative procedure level. The trained models received the following indicators:
The YOLOv5 first case trained on weld contour images extracted from radiographic and
conventional images of the test object achieved a mAP@0.5 value of 86.9%. The second case
YOLOv5, trained on radiographic inspection images with no markings on internal defects
and retrained on conventional photographs of defective welds, received mAP@0.5 96.8%.
Random forest, which determines the probability that a point belongs to a defective zone
from the weld surface cloud points, reached mAP@0.5 87.5%. In addition, we conducted a
full-scale experiment in the field, in which the proposed hardware and software platform
showed its stability. We fully agree that our proposed approach is inferior to existing
solutions based on radiographic and ultrasound examinations. However, the goal of our
work was to create a convenient and fast method for a preliminary assessment of the quality
of welding work “in the field.” In most cases, this will have a significant economic and
temporary effect in the case of early detection of weld defects. In addition, we outlined
a further trajectory of work in this direction. It is planned to consider the capabilities of
Inceptionv4 in solving the identified problems, as well as to adjust the YOLOv5 structure
by adding convolution from GoogLeNet/Inception to it in order to improve the accuracy
and speed of defect detection. Additionally, among other things, the performance of the
Raspberry Pi4 node in some tasks does not meet expectations, so we plan to select another
hardware platform in accordance with our vision of an economical product.
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