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It is convenient to assign phase transitions to two main groups: 
(i) those where one of the phase structures (low symmetry) 
contains only symmetry elements belonging to the wider 
symmetry group of the other, parent one; and (ii) both neigh-
boring phases contain symmetry elements absent in the group 
of the other one. The two above classes are termed as (i) pre-
serving or (ii) breaking ‘group–subgroup’ relationships [1]. 
For the phase transitions (PTs) belonging to the first group, 
a very efficient symmetry based phenomenological Landau 
theory has been elaborated (see textbooks [2, 3]). By contrast, 
for reconstructive phase transitions from the second group, 
breaking group–subgroup correlations, until recently no uni-
fying theoretical approach had been suggested. Consequently, 
experimental data on reconstructive PTs were typically dis-
cussed in view of particular properties of specific materials, 
but not emphasizing common type anomalies, and without 
identifying features general for reconstructive PTs. However, 
it does not mean that the latter is a rare phenomenon—their 
occurrence in crystalline materials is on the same level as 

Landau ones. Numerous materials which are important for 
practical applications undergo reconstructive PTs, and the 
martensitic transformation in metals and alloys is a typical 
example [4, 5].

A unifying crystal-geometrical theory of reconstructive 
PTs was suggested in the late 1980s [6–8]. It has shown that 
for specific periodic sublattice shifts Δ along certain sym-
metric directions, new symmetry elements arise which break 
the group–subgroup relation. Thus, significant shifts can 
bring the crystal lattice, via reconstructive PT, to a new, non-
group-subgroup related phase. Displacive mechanisms allow, 
therefore, to describe reconstructive PT using the ‘transcen-
dental’ order-parameter (OP) η defined as a periodic function 
of the critical atomic displacements Δ, and, consequently, to 
obtain a periodic thermodynamic potential F[T,P,η(Δ)]. More 
details can be found in [1]. The minimization of F[η(Δ)] with 
respect to Δ yields two types of stable phases: (a) ‘Landau’ 
phases (∂F[η(Δ)]/∂η = 0) which are group–subgroup related 
to the parent phase symmetry, and (b) ‘limit’ or ‘non-Landau’ 
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Abstract
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phases (∂η/∂Δ = 0) which have no group–subgroup relation 
to the parent structure and coincide with the extremes of η(Δ).

On one hand, this approach [1] was successfully applied to 
reconstructive PTs in some elements and compounds (see, e.g. 
[1, 9–11]). The specific topology of their P-T phase diagrams, 
the stability domains of the both non-Landau reconstructive 
phases and Landau ones, and the corresponding transition 
anomalies were explained in the framework of few unified 
phenomenological models.

On the other hand, diffraction experiments inside the 
premartensitic regions in some alloys undergoing recon-
structive PTs (for instance, NiTi [12, 13] or NaAl [14, 15]) 
revealed anomalous superstructure reflections in vicinity of 
Bragg peaks: their incommensurate q-vectors have no inver-
sion center, and its arrangement depends on the number of 
the corresponding Brillouin zone (BZ). Thus, the diffrac-
tion pattern does not correspond to a conventional periodic 
incommensurate structure. The phenomenological approach 
was typically employed in order to reveal the origin of such 
satellites [16, 17]. It accounted for specific features of cer-
tain compounds [18, 19], but neglected those distinguishing 
reconstructive PTs and Landau type ones. The phenomeno-
logical models typically discussed premartensitic nucleation 
on defects [15, 20, 21], or considered martensite plates with a 
fine twin structure going down to the atomic scale (so called 
‘adaptive phases’) [22].

A new, not fully understood phenomenon was discovered 
during the last decade by single crystal synchrotron radiation 
diffraction under high pressure. In elemental crystals, within 
a wide pressure range, complex crystal structures containing 
hundreds atoms in a unit cell were observed. The BaIV struc-
ture which contains, following [23], 768 atoms per unit cell is 
a record to date. The general symmetry based approach [1–3], 
however, predicts no such phases.

In this Letter we extend the approach [1] by accounting 
for the elastic properties of the crystal lattice. It enables us 
to reveal a universal scenario for the onset of incommensu-
rate phases, induced by the reconstructive PTs. We will show 
its general thermodynamic origin based on the example of 
the low-temperature martensitic transformation in the alkali 
metals. We will also briefly address the nature of complex 
structures observed recently in elemental crystals under high 
pressure.

The crystal-geometrical approach to reconstructive PT [1] 
considers the latter as a uniform transformation of a parent 
crystal lattice to a distorted one; the corresponding atomic dis-
placements are mapped as shifts of the dimensionless points. 
Evidently, the consideration is missing inter-atomic interac-
tions which are responsible particularly for the general capa-
bility of the crystal lattice undergoing deformations. Another 
specific point is that geometrical pathways at reconstruc-
tive PTs require sublattice shifts comparable to inter-atomic 
distances. One concludes therefore that, by analogy to the 
classic problem of the theoretical crystal strength [24], any 
advanced approach to reconstructive PTs should account for 
possible appearance of inhomogeneous structures. A realistic 
thermodynamic model (i) should deal with a thermodynamic 

potential density; (ii) the latter should contain not only the pri-
mary OP periodic contributions but also contributions of the 
strain field, including those induced by the non-uniform OP 
distribution.

Our unified approach can be introduced, without losing 
generality, through the example of the martensitic recon-
structive PT BCC-9R [Im-3m(Z = 1) to R-3m(Z = 3)] which 
occurs in Li (TM ~ 77 K), Na (TM ~ 35 K) and, presumably, 
K metals [25]. The primary symmetry breaking BCC-9R 
mechanism relates to the twelve-dimensional irreducible 

representation τ3(k4), with k4 = ( ), , 0π

a

π

a

1

3
 [10]. One finds 

that the corresponding thermodynamic potential contains 

‘mixed’ 5th-degree invariants which couple the OP and space 
derivatives  ∇i (irreducible representation F1u) to shear strain 
tensor components ujk (F2g) or to the symmetry-adopted ε1 = 
(uxx  −  uyy)/√  2 and ε2 = (uxx  +  uyy  −  2uzz)/√  6 (Eg):
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In order to demonstrate their generic structure, one of four 

invariants is displayed in (1), the others appear in an effec-
tive form below. Only the first characteristic terms are shown 
in (1), the others can be produced by permuting subscript 
indexes.

 In the literature, the identification of reconstructive PTs so 
far mainly underlined the break of the group–subgroup rela-
tionship between symmetries of the parent and non-Landau 
phases. However, little attention has been paid to the less 
evident fact that the purely geometrical conditions exist, and 
they control, in the non-Landau phase, the values of the OP 
and spontaneous strain components so that their magnitudes 
are independent of external parameters (temperature, pres-
sure etc) [1]. Therefore, the effective degree of the invariants 
of type (1) in the thermodynamic potential lowers, and this 
latter dramatically increases the impact of high-order mixed 
gradient terms.

The symmetry change Im-3m to R-3m requires for the 
twelve-component OP (ηi, i = 1 ÷ 12) satisfying in the 9R 
phase condition:

η η η η= = ≠ = = ÷j 0,  and  0 for  3 12,j1 2 0� (2)

where the OP equilibrium value η0 = const. Taking into 

account that the spontaneous strain components uxy
0  and ε2

0 are 
also constant in 9R [10], one immediately realizes that the 
corresponding coupling invariants assume the form similar to 
the proper Lifshitz invariant:
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We stress that, in contrast to Landau type PTs, the above 

reduction does not lead to a necessary small size of the renor-
malized coupling constants generally. Then one can write 
down an effective thermodynamic density in the form (η1 = 
η2 = η):
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[ ] [ ] ( ) [ ] ( )η η η η η= + + ∇ + ∇F u F F u F F u,   , .ik ik ik1 2 3 4� (4)

The F1[η(Δ)] = a1η2  + a2η4 + a3η6 term is a non-equilib-
rium contribution of the primary OP. The OP is a periodic func-
tion of critical displacements Δ of corresponding atomic layers 
along the [−110]С direction, e.g. η(Δ) = η0·sin(3πΔ/a  √2) 
[10]. F2 is the elastic strain energy; it includes important 
improper terms coupling the primary OP {ηi} to shear strain 

tensor components ( )η η≈ + ⋅I us xy
eff

1
2

2
2 , and to its diagonal 

components ( ) ( )η η ε ε≈ + ⋅ +Ie
eff

1
2

2
2

1 2 . F3[∇η] accounts for 
the conventional OP gradient contribution. Finally, F4, being 

proportional to I jc
eff (3), is a coupling energy of the non-uni-

form OP distribution and a strain field. It should be specially 
noticed that the proper Lifshitz gradient invariant does not 
appear in (1) due to the symmetry restrictions. Nevertheless, 
the above symmetry adopted terms linear in the OP gradient 
ensure appearance of the stable incommensurate phase. The 
latter can be driven either by spontaneous strains, or by the 
deviatoric stresses due to the non-hydrostatic compression 
conditions.

Already the equilibrium conditions (2) and the form 
of the inhomogeneous energy contributions (3) allow us 
to predict some crystal-geometrical characteristics for the 
strain-induced incommensurate phase. The equation (2) iden-
tifies the atomic plane (1 1 0)BCC as becoming a hexagonal 
close-packed (0 0 1)9R, and directs new three-fold axe along 
[1 1 0]BCC||[0 0 1]9R [10]. The coupling terms in F2 predict that 
the spontaneous strains uxy and ε1–2 should be induced in a 
new structure. The former, according to I1c

eff, may impose, in 
the rhombohedral phase, incommensurate structure modula-
tion along the [0 0 1]BCC direction, while the latter (see I2c

eff) 
does the same in the [1 1 0]BCC||[0 0 1]9R direction.

To identify the incommensurate structure in detail, one has 
to solve not simply algebraic but rather the partial differential 
equations of state coming from the functional (1), with certain 
boundary conditions. Generally very difficult, the problem 
can be solved in some special cases. In particular, if the strain 
distribution is approximately uniform, a triple sine-Gordon 
equation should be solved.

Its simplest solutions describing 1D incommensurate 
phases, read:

( )( )∫=
− + − −

∆
x

u

u u E a u a u a u

d

1
,

x 2
1 2

2
3

30
� (5)

where x0 and E are the integration constants.
Possible incommensurate phases are given by inverting the 

hyperelliptic integral x = x(Δ). Generally, it yields several 
periodic solutions, each defined by the couple of adjacent real 
roots of the denominator zeroes in (5) keeping the positive 
radical. The period of each incommensurate structure is given 

by the numerical value of (5), where the high and low integra-
tion limits are equated to the chosen roots. Minimizing the 
potential (4), one finds the relevant solution Δ0(x)4. It depends 
on the phenomenological parameters a1 and E, and the magni-
tude of the uniform strain component coupled to the OP gra-
dient. The component plays a role of the chemical potential 
for solitons in incommensurate phase, and it controls stability 
limits of the latter. Notice that onset and evolution of the strain 
induced incommensurate phase at reconstructive PT shows a 
clear analogy to the formation of soliton superstructures at the 
Landau type PT when the proper Lifshitz invariant is allowed 
[3]. The only new mathematical feature is that for reconstruc-
tive PT the full set of periodic solutions contains few distinct 
branches corresponding to different root couples, the solu-
tions are hyperelliptic integrals. These are rare in problems 
in physics, while elliptic ones are common (see, however, 
note5). Concerning the physics, the difference is much more 
remarkable as the existence of such branches reflects the pos-
sibility of PTs between different incommensurate phases. 
The analysis of such sequential transformations observed, for 
example, in Eu [27] could be an exciting topic itself; however, 
it is beyond the subject of the present communication.

Another scenario comes into play if, after elimination of 
inhomogeneous strains, the sign of the renormalized coeffi-
cient at the OP quadratic gradient invariant becomes negative. 
Then in the vicinity of a continuous transition to the incom-
mensurate phase, the corresponding linearized equations  of 
state assume the same form as those near the Lifshitz point 
at the Landau type PT. Nevertheless, the fully developed 
incommensurate structure is different since the thermody-
namic potential at reconstructive PT is more complex than the 
ones describing the conventional Landau’s incommensurate 
phases.

It is worth comparing our approach to the already existing 
models of inhomogeneous intermediate states observed at 
reconstructive PTs. In the framework of traditional crystal-
geometrical models of strongly discontinuous martensitic 
transformations, the origin of anomalous satellites was attrib-
uted to the stacking faults accommodating the distortions 
of twinned martensite plates to the austenite matrix [22]. 
Polynomial expansion by strains is often used as a thermo-
dynamic potential for crystals undergoing martensitic trans-
formations (see, e.g. [28]). It corresponds actually to the case 
of proper ferroelastic PT of the Landau type. In this case 
inhomogeneous structures are considered to be induced by 
defects. Following a similar strategy, i.e. inventing an analog 
of improper ferroelastic PT, a model was used in [16, 17] 
whereby a phonon mode, corresponding to atomic layer shuf-
fling at martensitic transition, is a primary OP which is cou-
pled to the secondary uniform strains. One notices that both 
approaches are missing essential features of reconstructive PT 
and their OP. The former approach fully neglects the contribu-
tion of the actual OP in the thermodynamic potential (4) and 
the free energy is minimized only with respect to the strain 
field components. Obviously, it allows one to determine the 
mesoscopic structure morphology in the phase coexistence 

4  Interesting to note that the mathematical problem of inverting hyperelliptic 
integrals was solved already in 19th century by efforts of such distinguished 
mathematicians as K G J Jacobi, B Riemann and K Weierstrass. However, 
until recently, the only known example of its application in physics was 
provided by S Kovalevskaya who solved, in 1888, the problem of the asym-
metric solid body rotating around a fixed axis. Few years ago the method 
was applied to describe a particle motion in the multidimensional gravity 
field (e.g. near the ‘black hole’) [26]. 5  See footnote 4.
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region only if the contribution of the elastic energy is domi-
nant in the potential. The latter approach suffers because of 
the crude approximation of the displacement field Δ(x) by a 
phonon in a BZ point with rational coordinates, defined by a 
commensurate structure of the martensite phase. This is irrel-
evant to the case, as generally the spatial dependence of Δ(x) 
minimizing periodic thermodynamic potential at reconstruc-
tive PT cannot be described as a ‘frozen’ phonon. In partic-
ular, the fact has been confirmed for Li experimentally [29]. 
Moreover, the unit cell parameters of the Li lattice in austenite 
(Im-3 m) and martensite (R-3m) phases allow a practically 
perfect coherent habit-plane interface between the parent 
BCC structure and an unfaulted 9R phase. It would be logical 
to conclude that a simple crystal-geometrical approach is an 
adequate tool, while martensitic transformation could occur 
via sidewise growth of the perfect martensite plates. However, 
instead of the latter, a mosaic of irregular martensite segments 
arises showing the presence of highly faulted or disordered 
polytype structures. It should be mentioned that the authors 
of [29] used high-purity samples while in experiments with 
Li-based solid solutions no similar close packed polytypes 
were observed [30]. It appears to reveal the inherent char-
acter of the polytype formation mechanism, while impurity 
suppresses the process. Thus, it is natural to believe that it is 
the existence of the above improper Lifshitz invariants that 
cause the instability of 9R with respect to complex polytype 
structures.

It would be worthwhile also to revisit the results of neu-
tron diffraction studies of single crystalline potassium. The 
corresponding patterns were obtained, analyzed in detail, and 
discussed in late 1980s (see, e.g. [31–34]). On one hand, weak 
superstructure satellites of (0.995, 0.975, 0.015) type were 
suggested by the authors of [31] to indicate the beginning of 
a BCC-9R transformation. On the other hand, in [32–34], it 
was interpreted as charge density wave satellites. The con-
tradiction was not unambiguously resolved, while the above 
conclusion on stability of the complex incommensurate struc-
ture induced by the secondary elastic OP might provide a new 
understanding of the experimental data. Indeed, the directions 
of incommensurate modulations concluded from minimiza-
tion of the inhomogeneous energy contributions I1c and I2c 
correspond fairly well to those observed in neutron scattering 
experiments.

General symmetry requirements imposed to OP which 

imply the mixed coupling term { }η η∇ui
n

ik j  should be derived 

following standard group theoretical procedures (see, e.g. [2]).  
Comparing to the symmetry restrictions on the Lifshitz invari-
ants, selection rules for the new gradient terms are less restric-

tive. Indeed, the symmetry properties of the conventional 

Lifshitz invariants { }η η∇i k  are described by the tensorial 

product of the antisymmetrized square { }ηi
2  of the OP rep-

resentation and of the vector representation spanned by the 
coordinates xi. For such term to be invariant, the antisym-
metrized square of the OP should contain the vector repre-

sentation V: { }ηi
2   ⊃  V. In the above case of reconstructive 

PTs, the gradient operator  ∇, spanning V, transforms to uik  ∇, 

and the corresponding representation is a direct product of 
the one, [Uik], spanned by the components of the symmetric 
second-rank tensor and V. The above condition transforms to 

{ }ηi
2   ⊃  V  ⊗  [Uik]. The product, in the general case, is a reduc-

ible representation, and { }ηi
n  (n    2) can contain any of its 

irreducible parts.
For example, in the cubic point group m-3m, irreducible 

representation F1u is the vector one, and it has to be present 

in the expansion of { }ηi
n . However, the operator uik  ∇  trans-

forms as F2g  ⊗  F1u = A2u  ⊕  Eu  ⊕  F1u  ⊕  F2u, and any of four 

latter representations, but not exclusively F1u, can be in { }ηi
n . 

It is worth noting that the above condition formally forbids 
the existence of the coupling invariants but does not forbid 
totally the onset of an incommensurate phase, since the latter 
can arise due to energetic but not symmetry reasons.

Generalizing, one can predict, for reconstructive PTs 

whose OPs allow high-order invariant { }η η∇ui
n

ik j , a tendency 

for incommensurate phase to occur under the application of 
large stresses, or in a coexistence range of strain-dominant 
martensitic phase, or its onset in plastically distorted crystals. 
It is promoted by the increase, in above cases, of impact of the 
mixed terms responsible for the formation of strain induced 
inhomogeneous structures.

The widespread extremely complex structures recently dis-
covered in elemental crystals under high pressure (see review 
papers [35, 36]) seem to be a good example of the trend. In 
particular, analyzing the exciting case of the Ba metal, one 
finds, first of all, that it undergoes the classical reconstructive 
phase transition BCC-HCP (Im-3m  −  P63/mmc) at Ptr = 5.5 
GPa. Then, at Pi = 12 GPa, it adopts a very complex struc-
ture containing hundreds atoms per unit cell. Moreover, the 
corresponding so-called BaIV phase actually has a sequence 
of several different complex inhomogeneous structures [23]. 
Applying the above selection rules to the OP for the BCC–
HCP transformation, which spans irreducible representation 
τ4(k9) of the Im-3m space group, one finds that its thermo-
dynamic potential does contain the coupling terms of the 
type (3) but the proper Lifshitz invariant is not allowed. This 
example supports our conjecture that many high-pressure 
complex phases should be treated as incommensurate ones 
induced by the improper Lifshitz invariants. It is worthwhile 
mentioning that this idea is not totally new (a suggestion to 
consider the specific structure Ga-II, assumed to contain 104 
atoms/unit cell [37] as an incommensurate structure was pub-
lished recently [38]) but now it also finds strong general sym-
metry and thremodynamic arguments.

It is worth recalling that both the form of allowed gra-
dient invariants and the structure of possible incommensu-
rate phases is controlled by the symmetry of the stress tensor. 
Consequently, the distribution of diffraction superstructure 
satellites depends on the compression conditions: the arrange-
ment of satellites obtained in hydrostatic conditions should be 
different from the one observed at any deviation from hydro-
staticity, whatever induces it. In any case, more experimental 
and theoretical efforts are needed in order to shed light on the 
origin of incommensurate phases related to reconstructive 
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PTs, in general, and to disclose the nature of the complex 
structures observed in elemental crystals under high pressure, 
in particular.

Summarizing, we emphasize that the approach developed 
in the paper is model free. It is symmetry based and addresses 
the fundamental properties of reconstructive PTs. Both the 
periodic dependence of OP η(Δ), and the existence of effec-
tive improper Lifshitz invariants in the corresponding thermo-
dynamic potential, are controlled by the crystal symmetry. It 
does not depend on the material and is equally applicable to 
metals, semiconductors or insulators. Due to weak symmetry 
restrictions for mixed gradient invariants, relevant to recon-
structive TPs, the strain induced incommensurate phases seem 
to be more probable than classical Landau’s ones. The general 
symmetry arguments are aiming at encouraging the system-
atic construction of improper Lifshitz invariants and carrying 
out first-principal calculations of the coupling constants for 
crystals undergoing reconstructive phase transitions.
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