

Materials Science and Engineering: C

Volume 80, 1 November 2017, Pages 110-116

Solvothermal synthesis of Sm³⁺-doped Fe_3O_4 nanoparticles

T.A. Lastovina ^a $\stackrel{\otimes}{\sim}$ ^{III}, A.P. Budnyk ^a, E.A. Kudryavtsev ^b, A.V. Nikolsky ^c, A.T. Kozakov ^c, N.K. Chumakov ^d, A.V. Emelyanov ^d, A.V. Soldatov ^a

E Show more

https://doi.org/10.1016/j.msec.2017.05.087

Get rights and content

Highlights

• Sm³ +-doped magnetite nanoparticles were obtained by solvothermal polyol method.

• Magnetic nanoparticles are twice smaller if 2,2'-bipyridine is used as a capping agent.

• Sm³+-doped magnetite nanoparticles have clean surface and are useful as a MRI contrast agent.

Abstract

Magnetic iron oxide nanoparticles doped with samarium were prepared by solvothermal polyol method. An introduction of 2,2'-bipyridine during the synthesis reduces the particle diameter to about 9 nm in average. The difference in physical and magnetic properties of the samples prepared with and without capping agent was outlined on the basis of complex characterization by a number of experimental techniques. The characteristics of resulted product make it suitable for biomedical applications, for instance, as a contrast agent for MRI.