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Abstract—Mechanical and tribological properties of the steel surface can be improved by TixAl1–xN multi-
layer coatings. Their rational design starts from a deep understanding of the functional relation of synthesis 
parameters, morphology, and crystallinity to final properties of layers. This problem can be described as ex-
perimentally intractable as it requires numerous specimens, spectroscopic characteristics, and tribological 
tests to cover a large multidimensional parameter space. The present paper discusses the possibility of pre-
dicting the mechanical and tribological properties of coatings by machine learning methods. The algorithm is 
trained on a set of theoretical micromechanical calculations. The quality of predictions is determined by com-
paring between several machine learning methods: ridge regression, random forest, radial basis functions, 
and neural networks. The machine learning approach is shown to be applicable to reverse engineering. The 
tandem neural network architecture is used to overcome the ambiguity problem and to predict Young’s mo-
dulus and Poisson’s ratio for each layer depending on the required mechanical parameters of the multilayer 
coating. The neural network topology is optimized so that the relative error comprises less than 5%. 
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1. INTRODUCTION 

The development of new engines, aircrafts, and 
high-speed trains poses new challenges in the design 
of heavily loaded friction units aimed to increase the 
service life and reduce tribological losses in triboco-
uples [1]. New generation coatings, called adaptive, 
are able to change their properties depending on the 
operating conditions. For example, Ti-Al-N films are 
adaptive to oxidation resistance. The protective pro-
perties of such coatings can be enhanced by introduc-
ing chromium, which ensures the thermal stability of 
the coating structure [2–4]. The tribological properti-
es of the coatings are improved by optimizing the 
thickness, friction coefficient, and resistance to elas-
tic and plastic deformation. The thickness of coatings 
on the contact surfaces of loaded friction pairs must 
be reduced in order to avoid the distortion of friction 
contact geometry and the formation of stresses in the 
coating during operation. Other mentioned parame- 
 

ters of nitride cermet coatings can be modified by 
introducing additional components during coating 
deposition, as well as by changing the coating archi-
tecture. For example, high friction wear resistance 
was shown for single-layer CrAlSiN coatings and 
those deposited in alternation with carbon precursors 
[5]. 

Progress in machine learning methods and big da-
ta analysis allows computational screening of new 
materials in order to select the required composition 
and morphology for specific tasks [6]. The open lite-
rature contains a large amount of data about the 
structure and properties of molecules and solid mate-
rials that can be used to train machine learning algo-
rithms [7]. Of great interest is the screening of new 
materials based on structure–property–activity corre-
lations [8]. In [9], a python-based molecular simulati-
on design framework MoSDeF was applied to screen 
functionalized monolayer films with an emphasis on 
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their tribological efficiency. Machine learning algo-
rithms can significantly reduce experimental and 
computational costs [10]. This is primarily because 
they can be used to reconstruct unknown nonlinear 
dependencies in experimental or observational data 
[11–13]. Starting with the works of Jones et al. [14], 
the use of artificial intelligence and neural networks 
in tribological applications has been constantly ex-
panding in the last two decades [15], involving such 
diverse areas as wear of polymer composites [16, 
17], tool wear [18], brake performance [19, 20], ero-
sive wear of polymers [21], wheel and rail wear [22]. 
It is noteworthy that friction processes are affected 
by both microscopic material parameters (atomic 
binding energies, adhesion energy, defects and stres-
ses in the crystal structure) and macroscopic parame-
ters (surface morphology, coating thickness and 
strength, loading parameters, chemical reactions du-
ring tests). Machine learning methods speed up the 
testing of new materials by eliminating the need to 
repeat tedious calculations or experiments every time 
[23], which is particularly important for complex 
multicomponent systems. 

Here we investigate the applicability of neural 
network algorithms for predicting the mechanical 
properties of a multilayer coating. Two options of al-
gorithm application are considered. In a direct ap-
proach, coating properties are predicted based on the 
known parameters of each layer and the fraction of 
inclusions. In an inverse approach, the desired coat-
ing properties are achieved by finding one of the pos-
sible sets of parameter values for each layer and the 
fraction of inclusions. 

2. METHODS 

2.1. Mechanical Properties of the Multilayer Coating 

The study is focused on exploring a TiAlN layer-
ed medium with alternating TiN and AlN layers. The 
multilayer coating model is shown in Fig. 1. The me-
dium is transversely isotropic, with the x3 transtropy 
axis perpendicular to the plane of the layers. The ten-
sor of elastic constants of the layered medium Ceff is 
determined based on the differential scheme of the 
self-consistency method [24–27] for oblate sphero-
idal inclusions using the following relationship: 

eff eff
II

eff eff
II

d ( ) 1 ( )
,

d 1 ( )( ( )) ( )

  


      
C C C

E S C C C
(1) 

eff
I(0) (1),C C  

where φ is the volume fraction of the material of in-
clusions in the medium, S is the Eshelby tensor for a 

transtropic medium, E is the unit tensor, and CI, CII 
are the elastic constant tensors of the base and inclu-
sion materials (isotropic materials). Note that using 
Eq. (1) the effective moduli of the layered medium 
can be calculated by simulating layers as infinitely 
thin disc-shaped lamellar inclusions [26, 27]. Such 
inclusions have the form of spheroids with semiaxes 
a1 = a2 = a, a3 = ςa, where 1.   The Eshelby tensor 
components are known in this case [28]. The effec-
tive elastic moduli of the layered medium were nu-
merically calculated using the MATLAB software 
package. To verify the calculation results obtained 
with Eq. (1), the program was first tested for special 
cases for the Eshelby tensor components for an iso-
tropic medium with spherical inclusions. 

Such an approach to modeling the mechanical 
properties of ion-plasma sprayed coatings on the ba-
sis of their microstructural analysis was implemented 
in our previous works [26, 27]. There we presented 
the dependences of the elastic moduli of a homoge-
neous medium on the microstructural parameters of a 
multilayer coating. The results of modeling the effec-
tive elastic properties of the layered medium were 
quantitatively compared within micromechanical 
framework [26] and finite element approach [27]. In 
addition, the theoretical Young’s modulus of the lay-
ered medium in the plane perpendicular to the spray-
ing direction was compared with the results of a la-
boratory nanoindentation test on a TiAlN coating 
sample with a known Al/Ti ratio [29]. In [30], the 
Maxwell homogenization scheme was used to deter-
mine the effective properties of three types of 625 al-
loy coatings depending on microcracks and oxide in-
clusions. 

2.2. Machine Learning Algorithms 

The successful application of machine learning 
methods requires a sufficient collection of training 
data that would uniformly cover the space of values  

 

 

Fig. 1. Schematic view of a multilayer coating consisting 
of alternating layers of TiN (1) and AlN (2) (color 
online). 
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Fig. 2. Comparison of training sets generated by different methods: network (a), random (b), improved Latin hypercube sampling 
(c) (color online). 

 
and the domain of the multivariate objective func-
tion. To predict the mechanical and tribological pro-
perties of coatings, we built a training set using the 
numerical solution of Eq. (1). The set was balanced 
by generating points in the parameter space with the 
improved Latin hypercube sampling (IHS) method. 
As an example, Fig. 2 shows the distributions of po-
ints in the training set consisting of 16 objects and 
their projections in the two-dimensional case. 

The machine learning methods used were ridge 
regression, random forest, and neural network. Ridge 
regression is a linear regression that performs regu-
larization to find optimal parameters. Let us consider 
a linear regression function that predicts the output ŷ  
for each input vector x = (x1, x1, ..., xp) by the formula 

 0
1

ˆ .
p

j j
j

y x


     (2) 

The learning task for such a model is to find the 
optimal parameters 1( ) p

j j  for the objects of the 
training set 1( , ) .N

i i ix y   The search for the optimal so-
lution is carried out by the least squares method: 
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1
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i
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The regression coefficients can grow significantly 
during learning, which seriously reduces the genera-
lization ability of the method. To limit the growth of 
these coefficients, we added the Tikhonov regulariza-
tion: 

 2 2

1 1
RSS( ) ( ) min.

pN
T

i i k
i k

y x
 

          (4) 

The random forest algorithm [31] and a modified 
algorithm of extremely randomized trees (extra trees) 
[32] are ensemble algorithms, represented by a set of 
machine learning models (decision trees). The pre-

diction of an ensemble algorithm in regression prob-
lems is performed by averaging the predictions of all 
models in the ensemble. For more stable ensemble 
predictions, each of the models included in the en-
semble is trained not on the entire feature space, but 
on its randomly generated subset. Such subsets for 
each ensemble model are generated repeatedly. 

Radial basis functions (RBF) in fact present an in-
terpolation method. These are real functions φ(x) = 

φ(vx – cv) depending only on the distance to a center 
c. Using a linear combination of such functions, it is 
possible to approximate an unknown dependence in 
the training set data: 

 
1

ˆ( ) (v v).
N

i i
i

y x x x


     (5) 

The Euclidean norm is used as the norm for deter-
mining the radius, and a second-order polynomial is 
used as the radial function. 

Artificial neural networks are a mathematical mo-
del of biological neural networks. In the general 
form, the response of an artificial neuron can be ex-
pressed by the equation 

 0
1

( ) ,
N

i i
i

x f x


      
 

  (6) 

where f (x) is the neuron activation function. Here we 
used the following activation functions: sigmoid, hy-
perbolic tangent, and rectified linear unit (ReLU). 
Figure 3 illustrates the perceptron model used in this 
work. The input layer is a vector of input values of 
length n. The hidden layer consists of m neurons, 
each of which receives the same input signal at the 
input. The hidden layer can consist of several layers. 
The optimal architecture for the problems solved in 
this work was found to be a multilayer perceptron 
consisting of four hidden layers with 100, 200, 200,  
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Fig. 3. Perceptron neural network used (color online). 

 
and 100 neurons, respectively. The output layer con-
sists of neurons that return the answer to the problem 
being solved. For the problem of classification into k 
classes, each of k output neurons predicts the proba-
bility of belonging to a certain class. For the regressi-
on problem, we use one neuron that returns a number. 

When creating artificial neural networks, the 
weight coefficients ω are initialized in an arbitrary 
way. During learning, the weights in each layer are 
optimized using the iterative backpropagation algo-
rithm [33]. At the first stage, the input signal is di- 
 

rectly propagated through an artificial neural net-
works, i.e., the neural network prediction is comput-
ed for some input. Then, backpropagation begins. 
The calculation of partial derivatives during optimi-
zation requires that the activation function used be 
differentiable. In this work, we used the Adam 
weight optimization method [34]. 

As a rule, using the entire training set once to op-
timize the weights is not enough to get the best mo-
del. In this regard, the training set is mixed and fed to 
the input of artificial neural networks several times 
until the best quality of the algorithm is achieved. 
Each pass of the entire training set through artificial 
neural networks is usually called a training epoch. 

The quality of the machine learning algorithm 
was evaluated as follows. Let there be a training set 
with objects X = (x1, x2, ..., xN) and answers Y = (y1, 
y2, ..., yN); the set 1 2

ˆ ˆ ˆ ˆ( , , ..., )NY y y y  presents artifici-
al neural network predictions. The standard deviation 
function was used as a loss function in training artifi-
cial neural networks: 

 2

1

1
ˆMSE( ) ( ) .

N

i i
i

X y y
N 

   (7) 

The prediction quality of the machine learning model 
for the solved regression problem was assessed using 
the determination coefficient 

 

 

Fig. 4. Flow chart of applying machine learning methods for predicting the mechanical properties of the coating (a) and assessing 
the prediction quality of machine learning models (b) (color online). 
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Table 1. Results of comparing machine learning methods for direct problem solving 

Training  
set size 

Ridge  
regression 

Radial basis 
functions 

Extremely 
randomized trees 

Multilayer  
perceptron 

50 0.890 0.991 0.966 0.981 

100 0.926 0.996 0.962 0.981 

1000 0.979 0.999 0.992 0.999 

10 000 0.976 0.999 0.998 0.999 
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where 
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3. RESULTS 

The general flow chart of the algorithms is shown 
in Fig. 4a. In the present work, two mutually inverse 
problems were solved. 

1. Prediction of the effective mechanical proper-
ties of the layered medium, e.g., Young’s moduli E11, 
E33 and shear modulus G13 in a plane perpendicular to 
the x1x2 isotropy plane based on Eq. (1). The input 
data in this case were Ei and νi of isotropic materi-
als 1, 2 constituting the multilayer coating, and the 
volume fraction of the material of inclusions φ in the 
layered composition. 

2. Prediction of the mechanical properties of iso-
tropic materials 1, 2 such as Ei, νi, and volume frac-
tion φ on the basis of specified technical constants of 
the layered medium. 

Machine learning algorithms were trained using a 
training set of the mechanical property values of the 
coating. The set was generated in the parameter space 
(Е1, ν1, Е2, ν2, φ) by the IHS method and contained 
10 000 points. The parameter values varied in the fol-
lowing ranges: E1,2 = 180–400 GPa, ν1,2 = 0.2–0.4, φ = 

0–89. The great difference between the values is due 
to different units of measurement of the parameters. 
This imbalance between the values of the features 
used to train machine learning models can lead to un-
stable behavior of the model, especially when apply-
ing methods that are sensitive to absolute feature va-
lues. In this regard, all input parameters were norma-
lized so that their values were in the range from 0 to 
1. 

The mechanical properties of the layered medium 
were calculated for all points in space (Е1, ν1, Е2, ν2, 

φ): Young’s moduli E11, E33 and shear modulus G13 
in a plane perpendicular to the x1x2 isotropy plane. 
The resulting sets of points and the corresponding 
mechanical properties of the coating were used to 
train and test machine learning methods. The entire 
training set was divided into three parts in the ratio of 
80% : 10% : 10%. The first part was used directly for 
the algorithm training. The second part was used for 
intermediate prediction quality control. The last part 
was a test set for checking the prediction quality of 
the trained model. 

3.1. Comparison of Machine Learning Methods  
for Solving Direct and Inverse Problems 

The first step was to solve a direct problem of pre-
dicting Young’s moduli E11, E33 and shear modulus 
G13 from the values of elastic moduli, Poisson’s ra-
tios, and the volume fractions of phases 1, 2 in the 
multilayer coating. The determination coefficient R2 
was used to assess the quality of predictions. Table 1 
shows the prediction quality values of machine learn-
ing methods for training sets of different sizes. It can 
be seen from the table that the quadratic ridge regres-
sion method is the least accurate. The quality of pre-
dictions depends on the size of the training set, and 
saturation occurs when the number of points in a 
five-dimensional space is about 1000. 

Since different sets of layer parameters can give 
the same mechanical properties of the coating, the in-
verse problem has a non-unique solution. In such a 
situation, machine learning methods are able to pro-
vide only one of the possible solutions, so the quality 
of predictions was assessed as follows: 

– training of the machine learning model Mf to 
solve a direct problem, i.e., to predict (E11, E33, G13) 
by the values of the parameters (Е1, ν1, E2, ν2, φ), 

– training of the machine learning model Mi to 
solve an inverse problem, i.e., to predict the parame-
ters (Е1, ν1, E2, ν2, φ) by given values of (E11, E33, 
G13), 

– assessment of the prediction accuracy of the 
model solving the inverse problem using the determi- 
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Table 2. Results of comparing machine learning methods for inverse problem solving 

Training  
set size 

Ridge  
regression 

Radial basis 
functions 

Extremely 
randomized trees 

Multilayer 
perceptron 

50 0.925 –144.548 0.981 0.906 
100 0.963 –344.413 0.985 0.910 

1000 0.997 – 6854.715 0.993 0.957 

10 000 0.997 –17011.606 0.997 0.999 

 
nation coefficient R2 calculated for the given values 
of (E11, E33, G13) and the values predicted by the di-
rect model Mf from the parameters predicted by the 
inverse model Mi. A schematic description of this ap-
proach is shown in Fig. 4b. 

This approach to prediction quality assessment 
was based on the procedure for training tandem neu-
ral networks [35], which were used in the present 
work. Table 2 provides the values of the metrics R2 
for different machine learning methods that solve the 
inverse problem. All methods, except for RBF, pro-
vide a high accuracy solution. Radial basis functions 
as an interpolation method are unable to solve the in-
verse problem due to the ambiguity of the problem 
solutions, and therefore the predictions of such a mo-
del are random. 

3.2. Optimization of the Tandem Neural Network  
Architecture 

Ambiguity in the functional dependencies be-
tween the data prevents fast and reliable convergence 
to the optimal solution. This difficulty was overcome 
by using the tandem neural network architecture 
shown schematically in Fig. 5. 

 

 

Fig. 5. Schematic diagram of operation and training of a 
tandem neural network (color online). 

The tandem neural network consists of two parts: 
an inverse network and a direct network, each of 
which is trained separately. First, we trained the di-
rect network, which returned the effective mechani-
cal properties of the layered medium (E11, E33, G13) 
using the set of parameters (Е1, ν1, E2, ν2, φ). Next, we 
trained the inverse network, which on the contrary 
returned the mechanical properties of isotropic mate-
rials and their volume fractions (Е1, ν1, E2, ν2, φ) ac-
cording to the given mechanical properties of the 
layered medium. The output of the inverse network 
was connected to the input of the direct network, and 
the mean square error between the input values and 
the values obtained at the direct network output was 
used as a loss function. Thus, the intermediate layer 
connecting the two parts of the tandem network re-
turns a set of parameters corresponding to the given 
properties of the layered medium. Due to the ambi-
guity of the parameters corresponding to the desired 
mechanical properties, the result obtained with the 
tandem network is one of the possible solutions. 

A multilayer perceptron was used as both a direct 
and inverse neural network. The best result was ob-
tained for networks with 4 hidden layers, which re-
spectively contained 100, 200, 200, and 100 neurons. 
According to the input and target parameters of the 
direct and inverse problems, the input and output 
layer in the direct network consisted of 5 and 3 neu- 

 

 

Fig. 6. Neural network error variation for the training and 
testing sets during training (color online). 
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Table 3. Relative error values for inverse problem solving by the tandem neural network method. Comparison of user-defined and 
numerically calculated (Eq. (1)) mechanical properties of the coating (E11, E33, G13) based on the layer parameters (Е1, ν1, Е2, ν2, φ) 
predicted by the neural network 

Desired coating  
parameter values  

(E11, E33, G13) 

Layer parameters predicted  
by tandem neural network  

(Е1, ν1, Е2, ν2, φ) 

Coating parameters (E11, E33, G13)  
numerically calculated by Eq. (1) for  
layer parameters predicted by tandem  

neural network (Е1, ν1, Е2, ν2, φ) 

Relative error, % 

(200, 195, 75) (192.50, 0.259, 349.21, 0.206, 29) (198.77, 196.72, 78.35) (0.61, 0.88, 4.46) 

(248, 255, 90) (236.41, 0.292, 397.95, 0.239, 39) (248.02, 245.07, 95.13) (0, 3.89, 5.70) 

(308, 300, 117) (292.31, 0.248, 399.90, 0.245, 51) (305.20, 302.58, 121.6) (0.91, 0.86, 3.93) 

(355, 347, 135) (340.60, 0.246, 400.00, 0.260, 62) (350.86, 349.64, 140.2) (1.16, 0.76, 3.85) 

(387, 394, 144) (378.74, 0.266, 400.00, 0.312, 75) (384.07, 383.87, 150.2) (0.75, 2.57, 4.30) 

 
rons, respectively. In the inverse network, vice versa, 
there were 3 neurons for the input layer and 5 for the 
output one. An activation function in the direct net-
work was ReLU, and in the inverse network it was a 
sigmoid function. Neural networks were trained over 
500 epochs. The Adam optimizer with the learning 
rate parameter equal to 0.0001 was used as a network 
weight optimizer. Figure 6 shows the curves of varia-
tion in the magnitude of the neural network error du-
ring training. 

The reliability of the solution obtained with the 
tandem neural network was assessed as follows. For 
given Young’s moduli and shear modulus E11, E33, 
G13 of the multilayer coating (Fig. 1), the tandem 
neural network predicted the values of Young’s mo-
duli, Poisson’s ratios, and the volume fraction of iso-
tropic materials 1, 2 (Е1, ν1, Е2, ν2, φ). Then, we cal-
culated the values of the layered medium parameters 
(E11, E33, G13) for the obtained parameters (Е1, ν1, Е2, 
ν2, φ) of coating phases 1 and 2 using the numerical 
solution of Eq. (1). The relative error of the values 
was estimated by comparing the predicted values and 
the values obtained by the numerical solution of 
Eq. (1). Table 2 presents the error estimates for five 
sets of the mechanical property values of the layered 
medium. The average relative error for predicting the 
coating parameters does not exceed 3%, which indi-
cates fairly high prediction accuracy. 

4. DISCUSSION 

It should be noted that for higher Young’s and 
shear modulus values of TixAl1–xN layered medium 
the tandem neural network also predicts higher para-
meters Е1, ν1, Е2, ν2, φ. The TixAl1–xN multilayer 
coating, whose mechanical characteristics are given 
in the second row of Table 3, corresponds to the pa-
rameters predicted by the tandem neural network for 

TiN: Е1 = 236.41, ν1 = 0.29 and for AlN: Е2 = 397.95, 
ν2 = 0.24, with the Al/Ti ratio in weight percentage 
equal to 0.64. Multilayer coatings with 0.64 wt % 
Al/Ti ratio were studied in [30]. We made a compari-
son with the results of [30] where the authors give 
the values of reduced Young’s modulus obtained by 
nanoindentation. The results obtained for the maxi-
mum indentation force (10 mN) were considered to 
exclude the influence of the mechanical characteris-
tics of the substrate on the nanoindentation results. 
The reduced Young’s modulus obtained by nanoin-
dentation [30] was recalculated using the Oliver–
Pharr model [36]. The relative error between the 
Young’s modulus E33 = 255 GPa in the present study 
and the nanoindentation-based Young’s modulus of 
the coating with the same Al/Ti ratio given in Table 1 
in [30] did not exceed 5 and 10% for multilayer coat-
ings with thick and thin layers, respectively. 

The inverse problem cannot be solved with a soft-
ware implementation of the numerical solution of 
Eq. (1) as it is impossible in this case to calculate gra-
dients for using gradient descent optimization algo-
rithms. This can be done by machine learning me-
thods, especially artificial neural networks. The lite-
rature reports several examples of successful applica-
tion of machine learning techniques to tribological 
problems. Regression models were used for tribolo-
gical test results to predict the degree of wear for a 
copper surface modified with aluminum nitride and 
boron nitride particles [37]. The method of radial ba-
sis functions was applied to train the algorithm for 
predicting the friction coefficient of textured and po-
rous surfaces [38]. Suitable descriptors were selected 
to describe the surface morphology. The quality of 
the algorithm depends on the completeness of train-
ing data. In [39], tool wear was predicted by a prog-
nostic random forest method. The authors compared 
the performance of random forests with artificial 
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neural networks with feed forward back propagation 
and support vector regression. 

Classical machine learning methods are unable to 
find the entire set of solutions in problems that have a 
nonunique solution. This paper proposes an approach 
for finding one of the possible solutions with high ac-
curacy. Such problems can be effectively solved us-
ing the tandem neural network architecture. The 
problem of ambiguity of training set data is quite 
common, and there are several approaches to its solu-
tion. By introducing a new class for training set ob-
jects that cause ambiguity in data interpretation, it is 
possible to reduce the number of test set classificati-
on errors [40]. Another solution is to separate ambi-
guous objects from the training set [41]. For some 
pattern recognition problems, it is impossible to as-
sign only one class label. More efficient training of 
convolutional neural networks for such problems is 
achieved by converting the label of each image into a 
discrete label distribution [42]. 

5. CONCLUSIONS 

This paper considered the problem of optimizing 
the mechanical properties of a multilayer coating by 
selecting the properties of individual layers (Young’s 
modulus, Poisson’s ratio) and the volume fraction of 
the material of inclusions in the layered composition. 
A method was developed for solving the inverse 
problem of coating formation with given mechanical 
properties based on a tandem neural network. The 
architecture with the best prediction quality was 
composed of two identical multilayer perceptrons 
with four hidden layers consisting of 100, 200, 200, 
and 100 neurons. It was shown that a solution can be 
found when there are many ambiguous solutions, in-
cluding continuous ambiguity. The quality of predic-
tions estimated by the determination coefficient R2 
exceeds 0.99 for both the direct and inverse prob-
lems, provided the number of elements in the training 
set is more than 1000. The results obtained provide a 
basis for a digital technology of designing new tribo-
logical materials by machine learning to directly con-
trol the synthesis of materials. The use of this tech-
nology will permit the creation of functional materi-
als with specified tribotechnical and mechanical cha-
racteristics for specific operating conditions. 
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