In situ formation of hydrides and carbides in palladium catalyst: When XANES is better than EXAFS and XRD

Aram L. Bugaev a,b,*, Alexander A. Guda a, Andrea Lazzarini b, Kirill A. Lomachenko a, Elena Groppo b, Riccardo Pellegrini c, Andrea Piovano d, Hermann Emerich e, Alexander V. Soldatov a, Lusegen A. Bugaev a, Vladimir P. Dmitriev a,e, Jeroen van Bokhoven f,g, Carlo Lamberti a,b,*

a IRC “Smart Materials”, Southern Federal University, Zorge Street 5, 344090, Rostov-on-Don, Russia
b Department of Chemistry, NIS and INSTM Reference Centers, University of Torino, via Quarelio 15, I-10135 Torino, Italy
c Chimie SpA—Catalyst Division, via Di Pescali 74, Arezzo, 52041 Italy
d Institute Laue-Langevin (ILL), 71 Avenue des Martyrs, 38000 Grenoble, France
e SNBL at ESRF, 71 Avenue des Martyrs, 38000 Grenoble, France
f Institute for Chemical and Bioengineering, ETH Zurich, HCI E127, 8093 Zurich, Switzerland
g Paul Scherrer Institute, 5232 Villigen, Switzerland
b Department of Chemistry, CrisDi Centre for Crystallography, University of Torino, via Giuria 7, I-10125 Torino, Italy

A R T I C L E I N F O

Article history:
Received 21 November 2015
Received in revised form 20 January 2016
Accepted 15 February 2016
Available online 12 April 2016

Keywords:
Palladium hydride
Palladium carbide
EXAFS
XRPD
XANES simulations
Monte Carlo simulations

A B S T R A C T

In a number of hydrogenation reactions, palladium nanoparticles may undergo a transition to the hydride or the carbide phase, which affects the catalytic properties. In the current work, we determine the structural evolution of an industrial Pd/C catalyst in the presence of hydrogen and acetylene by means of in situ X-ray absorption spectroscopy and X-ray powder diffraction. We observe reversible hydride phase formation and irreversible formation of the carbide phase. The near-edge structure of the absorption spectra (XANES) plays the key role in distinguishing between hydride and carbide phases. We show that the presence of hydrogen and carbon atoms have a direct effect on the near-edge region which is reproduced by theoretical simulations performed in the Monte-Carlo approach.

© 2016 Published by Elsevier B.V.

1. Introduction

Metal nanoparticles play an important role in catalysis [1–13]. In the preparation of catalysts for hydrogenation of hydrocarbons, such as alkynes and alkenes, palladium is recognized as the preferred metal. In reaction conditions, palladium nanoparticles may undergo phase changes to hydride and carbide phases, whose nature affect the catalytic properties [14,15]. Therefore, determining the hydride and carbide formation during a catalytic process becomes an important problem, also relevant to industry. Being a subject of numerous theoretical [16–20] and experimental [19,21–34] studies, palladium hydride is one of the most studied metal hydrides. In contrast to the hydride, the structure and properties of the carbide phase are still under discussion [14,22,24,35,36].

The formation of both hydride and carbide phases is accompanied with an expansion of the palladium lattice, which can be followed by X-ray powder diffraction (XRPD) [37–39] and extended X-ray absorption fine structure (EXAFS) [24,34,36,40,41]. EXAFS is an element-selective technique and demonstrates high sensitivity to the local structure changes, such as bond distances and coordination numbers of the absorbing atom [4,12,13,42–46]. For palladium containing material, whose K-absorption edge is 24357 eV, hard X-rays can be easily applied to perform in situ and operando experiments [13,45,47–53]. At the same time, XRPD is a phase-selective technique and it gives detailed information on the crystalline phases, which is important if several phases coexist in the sample. In particular, XRPD has been successfully applied to determine the concentrations of α- and β- hydride phases in palladium particles during palladium hydride phase transition [54]. However, this approach is hard to be applied when the nanoparticles are
deposited on a crystalline support [34] and for nanoparticles with the size below 1.5 nm [54], where the weak and relatively broad Bragg peaks of the diluted metal phase (typically few wt.%) is overshadowed by the scattering from the dominant support phase. One should take into consideration that both EXAFS and XRPD are least sensitive to light atoms, such as carbon and especially hydrogen, due to their low scattering amplitudes compared to palladium. Thus, palladium hydride and carbide phases are observed by these techniques almost only indirectly, i.e. via Pd-Pd distance elongation or lattice expansion.

X-ray absorption near-edge structure (XANES) include a part of the absorption spectrum up to 30–50 eV above the absorption edge [12,13,46,55–58]. K-edge XANES probes the transition of 1s electron to empty np orbitals and is consequently sensitive to changes in the structure of unoccupied electronic states with p-symmetry. It was shown [20,34–36,59,60] that the formation of palladium hydride directly affects the shape of the X-ray absorption near edge structure due to mixing of unoccupied states of hydrogen and palladium. This makes XANES a promising tool for in situ investigation of palladium hydride and carbide formation, because unlike EXAFS and XRPD this method is sensitive to the presence of light atoms [25,61,62].

The aim of the current work is to present a systematic approach for in situ and operando investigation of the formation of hydride and carbide phases in an industrial palladium-based catalyst under realistic working conditions. We show that simultaneous utilization of XRPD, EXAFS and XANES allows obtaining complementary information on the nanocatalyst structure modification induced by the presence of the reactants. The special role in discriminating between hydride and carbide phases is given to XANES. The changes observed in XANES spectra of the palladium catalyst under reaction conditions are reproduced by theoretical simulations performed with a Monte-Carlo approach. EXAFS and XRPD data provide structural parameters, such as interatomic distances, coordination numbers, cell parameters, concentration of hydride and carbide phases, in the palladium nanocatalysts exposed to different amounts of hydrogen and acetylene.

2. Materials and methods

2.1. Catalyst preparation and activation

We used the 5 wt.% Pd on carbon catalyst D1190 from the Chimet S.p.A. catalyst library (http://www.chimet.com/en/d1190). The sample was prepared by deposition–precipitation method on a wood-based activated carbon [63] (surface area = 980 m² g⁻¹; pore volume = 0.62 cm³ g⁻¹) as extensively described elsewhere [64–66].

Before collecting experimental data, the sample was pretreated in hydrogen at 125 °C in situ and then outgassed and cooled down to 100 °C. This procedure guarantees to have a clean metallic phase for the starting material, avoiding the undesired surface oxidized phase observed on Pd nanoparticles exposed to air [66,67]. Experimental EXAFS spectra and XRPD patterns presented in this paper were collected at 100 °C under the following conditions: in vacuum, which corresponds to bare palladium nanoparticles, in 100 and 600 mbar of pure hydrogen, which resulted in hydride formation, in a mixture of 650 mbar of hydrogen and 350 mbar of acetylene, and in 1000 mbar of pure acetylene. Each time before changing the external conditions, the pretreatment procedure was repeated and XRPD data were collected to establish that the structure of the sample corresponds to bare palladium.

2.2. Experimental setup

X-ray absorption and X-ray powder diffraction measurements were performed at the Swiss-Norwegian Beamline (BM01B) of the European Synchrotron Radiation Facility (ESRF), Grenoble, France. The sample was loaded into a glass capillary of 1 mm diameter. The capillary was oriented horizontally and perpendicularly to the X-ray beam. A gas blower was positioned above the sample to control the temperature during the experiment. The capillary was glued into a metal holder connected with a pressurized setup, which allowed remotely controlling gas content and pressure inside the capillary. The minimal pressure, which was reached by using a scroll pump, was less than 0.1 mbar.

Experimental data were collected using different pressures of hydrogen (99.999% purity), acetylene (99.6%) and a mixture of these gases. Under each of the selected conditions, both X-ray absorption and X-ray powder diffraction measurements were performed. The beamline allows a rapid (about 30 s) plug and play switching between X-ray absorption and X-ray diffraction set-ups. Pd K-edge EXAFS data were collected in transmission mode using ionization chambers in the energy range of 24.1–25.4 keV employing a double crystal Si(111) monochromator in the continuous scanning mode. A palladium foil was measured simultaneously as a reference compound for energy calibration. After each X-ray absorption scan, 20 diffraction patterns were recorded by the CMOS-Dexela 2D detector. Each pattern was recorded with an acquisition time of 5 s and was followed by a dark scan used for background subtraction. The wavelength of λ = 0.50544(6) Å was selected by a channel-cut Si(111) monochromator. The A and the sample to detector distance, were calibrated using Si and LaB₆ powder NIST standards. The detector size and the chosen sample to detector distance allowed collecting diffraction patterns in a 2θ range between 5 and 52°, corresponding to a 5.79–0.57 Å d-spacing interval.

2.3. Data processing and analysis

EXAFS data were analyzed by means of the Ifeffit package [68], including background removal, normalization, energy shift correction, Fourier transformation, and fitting using theoretical amplitude and phase functions calculated by the FEFF6 code [42]. A first-shell fit of Fourier-transformed data was performed in real space between 1.5 and 3.1 Å utilizing k²-weighted normalization of χ(k) in the k-range from 5 to 12 Å⁻¹. Such interval of Δk was chosen to reduce the effect of the support [41], as the main contribution of Pd-C bonds occurs below 5 Å⁻¹, while at higher k the signal is dominated by Pd-Pd contributions. The number of independent parameters of such fits (2ΔkΔR/m) results larger than seven. The first shell Pd-Pd interatomic distance (R_{Pd-Pd}), Debye-Waller parameter (σ²), zero energy shift (ΔE₀) and first shell coordination number (N) were optimized in the fits. The value of the passive electron reduction factor S₀² = 0.83 was obtained by fitting the spectra of the palladium foil model and successively kept as a fixed parameter for the fits performed on the nanostructured sample.

For XANES calculation FEFF8.4 code [42,55] was applied using the Hedin-Lundqvist exchange correlation potential [69]. For the pure metallic phase, XANES calculation were performed on spherical clusters of fcc palladium of increasing size starting from a radius of 3 Å and adding progressively an additional shell of 1 Å. At each step the XANES simulations were compared and the procedure ended when the difference between the two successive steps were negligible. For R = 8 Å convergence was achieved. In the case of palladium hydride and carbide, hydrogen and carbon atoms were incorporated in the octahedral interstitials of the palladium lattice to reach the simulated PdHₓ (PdCₓ) stoichiometry. For any given stoichiometry, 1000 different microscopic configurations were obtained allowing to move hydrogen (carbon) atoms from
vacancy to vacancy inside the 8 Å palladium cluster by applying a Monte-Carlo approach. Theoretical spectra of palladium hydride and carbide were obtained by calculating and averaging of 1000 spectra corresponding to the microscopic configurations generated by the Monte-Carlo procedure. The Fitt-3 code [70,71] was used for fitting the experimental spectra by theoretical ones to obtain the best stoichiometry x(y) for the given experimental spectrum.

For XRPD data, dark field subtraction, averaging and azimuthal integration of diffraction images were performed by means of PyFAI package [72,73]. Rietveld analysis of the diffraction patterns was carried out in Jana2006 code [74]. The procedure included refinement of profile and background parameters, zero angle shift, cell parameters of two phases and their relative concentrations. The background was simulated using a 10-parameter Chebyshev function, while for the peak profile a 3-parameter pseudo-Voigt function was used.

3. Results and discussion

3.1. Sample characterization

Transmission electron microscopy images (Fig. 1) were collected using Tecnai G2 Spirit Bic TWIN FEI electron microscope operated at 100 kV. According to TEM analysis, the average nanoparticle size was 5.1 ± 0.8 nm. See Fig. S4 of the Supplementary material for the particle size distribution obtained from TEM.

3.2. Determination of hydride and carbide phases

Firstly, the structure of the catalyst exposed separately to a pure hydrogen and pure acetylene was investigated. Fig. 2 shows the FT of the EXAFS spectra (part a) and the XRPD patterns (part b) collected on the as activated catalyst (black curves) compared with those obtained after interaction with 100 mbar of hydrogen (violet curves) and 1000 mbar of acetylene (orange curves). The adopted conditions are known to form palladium hydride [34,59], and carbide [75,76] phases, respectively. The data reported in Fig. 2 indicate that it will be very hard to discriminate between hydride and carbide phases as they result in very similar experimental signals in both Fourier-transform of EXAFS and in XRPD patterns. Indeed, both techniques detect the new phase formation in an indirect way, that is the lattice expansion due to heteroatom insertion inside the fcc framework. This effect is analogous in both cases. When we expose the sample to pure gases, as done in the experiments reported in Fig. 2, we can obviously know in advance if we form hydride or carbide. However, the problem becomes more complex under reaction conditions, when a mixture of hydrogen and acetylene is sent and both hydride and carbide phases have a probability to be formed, since very similar responses are expected to be observed by both EXAFS and XRPD techniques independently on the phase actually formed: PdHx, PdCy or PdHxCy.

X-ray absorption near-edge structure (XANES) [12,13,42,46,55–58,77–80] allows us to overcome these difficulties and discriminate between palladium hydride and carbide phases. Fig. 3a shows that in the presence of hydrogen (violet
The structure and coordination of palladium metal carbide (orange curve) is seen to be broader and shifted by 1 eV to lower energy. Formation of palladium carbide (orange curve) broadening of the peak and shifts it by 1 eV to higher energy. This opposite behavior of XANES spectra during hydrogen and carbide formation is more pronounced in the difference spectra [81] and provides us a method to discriminate between the two phases under hydrogenation reaction conditions. To test this thesis we investigated the system sending at 100 °C a mixture of 650 mbar of hydrogen and 350 mbar of acetylene, see red curve in Fig. 3b. Comparing the XANES spectrum collected under hydrogenation reaction conditions with those obtained sending at 100 °C the pure reagents separately (100 and 600 mbar of H2 or 1000 mbar of C2H2) we can conclude that hydrogen phase is formed, having a similar composition to that obtained sending 600 mbar of pure hydrogen at the same temperature.

3.3. Theoretical simulation of XANES

Calculation of XANES spectra for palladium hydride and carbide structures was performed applying Monte-Carlo simulation of hydrogen and carbon atoms occupancy in the octahedral interstitials of the palladium lattice. For each of the selected concentrations x and y of PdHx and PdCy, respectively, we have generated 1000 different geometries and have used them for XANES simulation. The resulting spectra were averaged and used for quantitative fitting of experimental XANES. Fig. 4a shows the evolution of the difference XANES spectra for the PdHx phase in the 0 ≤ x ≤ 0.5 range. Part (b) of the same figure reports the analogous theoretical difference XANES spectra for the PdCy phase in the 0 ≤ y ≤ 0.2 interval.

Comparing the theoretical difference XANES spectra reported in Fig. 4a,b with the experimental ones reported in Fig. 3a, it becomes evident that the simulation of the XANES spectra was not just allowing to discriminate between PdHx and PdCy phases, but can be used also to quantitatively determine the stoichiometry of the phase formed in a given experimental condition, fitting the best x (y) value to better reproduce the experimental spectrum.

The fitting procedure was performed using a multidimensional interpolation approach implemented in the Fitt-3 code [70, 71]. A minimization of the root-mean-square difference between experimental and theoretical spectra in the region from 24350 to 24410 eV was used for structural refinement. For both hydrogen and carbon interstitial defects we have calculated series of spectra on a two-dimensional grid of parameters: concentration of defects and Pd-Pd distances. Calculated spectra, corresponding to different concentrations of hydrogen and carbon, and different interatomic distances, were used subsequently as interpolation nodes. Spectra of any required intermediate concentrations and interatomic distance were predicted based on the interpolation approach. The quantitative hydrogen and carbon concentrations were refined for each spectrum, while interatomic distances were fixed according to EXAFS analysis results (see Table 1). In particular, the resulting concentration of x hydrogen atoms in the sample exposed to 600 mbar of hydrogen converged to a value of x = 0.30 ± 0.05 (PdH0.3). The concentration of carbon in the acetylene-exposed sample was found to be y = 0.13 ± 0.05 (PdC0.13). The error values correspond to a maximal change in the x or y parameters which results in the change of Fit Index [71] for the difference spectra smaller than 10⁻³. The XANES spectra of the simulations of the
PdH$_{0.30}$ and PdC$_{0.13}$ are reported in Fig. 5, together with the experimental curves. To appreciate the modification undergone by the XANES spectrum upon H (C) atoms intercalation, the spectra (simulated and experimental) of pure Pd metal phase (black curves) are also reported.

3.4. EXAFS and XRPD analysis

The quality of the first shell EXAFS data analysis can be appreciated in Fig. 6, while the quantitative results are summarized in Table 1. First shell analysis of the reduced sample (first row in Table 1) results in a Pd-Pd interatomic distance ($R_{\text{Pd-Pd}}$) of 2.74 ± 0.01 Å and to a coordination number $N = 9.4 \pm 0.4$. As expected these values are smaller with respect to the bulk values: $R_{\text{Pd-Pd}} = 2.7511$ Å and $N = 12$ [82–89]. EXAFS analysis also indicated that in case of palladium hydride the Pd-Pd interatomic distance increases from 2.74 ± 0.01 Å to 2.77 ± 0.01 Å and 2.82 ± 0.01 Å for hydrogen pressures of 100 and 600 mbar respectively (Table 1). Sending a mixture of acetylene and hydrogen leads to the increase of interatomic distance to 2.81 ± 0.01 Å. Finally, exposure to pure acetylene caused an increase to 2.76 ± 0.01 Å. The carbide phase, formed after exposure to acetylene, was stable and did not decompose after thermal treatment in hydrogen. Changes in coordination number for different spectra were smaller than the error. Thus, the final fit was performed simultaneously for all spectra with common coordination number, resulting in the value $N = 9.4 \pm 0.4$.

The Debye-Waller parameter (σ^2) increased from 0.007 Å2 for bare nanoparticles to 0.008–0.009 Å2 in the presence of gases. The increase of Debye-Waller parameter in hydride phase is explained by the fact that palladium hydride phase formation is size dependent [19]. Thus, having the distribution of particle size [89], we obtain the distribution of interatomic distances at given temperature and hydrogen pressure.

For PdC$_y$ obtained in pure acetylene, the increase of the average interatomic distance is 0.02 Å, which is the result of coexisting bare palladium and newly forming carbide phase. In general, problems in resolving local atomic-structure distortions often occur...
for changes than 0.1 Å [90]. This means that although the relative changes in the average Pd-Pd distance can be resolved with standard EXAFS resolution of 0.01 Å, the coexistence of two distances in one sample cannot be resolved due to high (>0.9) correlation between \(\sigma^2 \) and \(\Delta R \) (difference between two interatomic distances).

Analysis of XRPD data indicates similar behavior of the palladium nanocatalyst as is observed in X-ray absorption spectra. To obtain structural parameters we have performed Rietveld for the XRPD data in 20 range from 10 to 50 (see Fig. 7), which contains 13 palladium reflections with a sufficiently high intensity for quantitative treatment: see Fig. 2b for the indexing the 10 reflection in the 10–40 20 interval. The profile parameters, zero shift and background were refined using the pattern of bare Pd and fixed for the other patterns. Two phases were used to refine the patterns of palladium hydride and carbide (first phase corresponds to bare palladium, second–to hydride or carbide respectively). The cell parameters of each phase and relative phase concentration were used as fitting parameters.
The advantage of XRPD is that the technique is phase-selective and gives detailed information in the case when several phases coexist in one sample. In contrast to EXAFS, the obtained atomic isotropic displacement parameter of palladium was equal to 0.006 and did not change considerably for different patterns. After exposure to pure acetylene, and 100 mbar of pure hydrogen a new phase started to appear, at the positions with slightly smaller 2θ angles than the peaks of bare palladium. It gives a clear understanding that there is the coexistence of two phases, which also explains the Debye-Waller increase obtained from EXAFS. The peaks, which appeared after exposure to acetylene and correspond to palladium carbide did not disappear after removal of acetylene and heating to 125 °C in hydrogen.

Table 1 also compares the structural parameters obtained from EXAFS and XRPD. As was discussed above, after exposure to 100 mbar H₂ or 1000 mbar CH₄, the hydride or carbide phases coexist with pure palladium phase. For these patterns, the double phase refinement was performed, the averaged cell parameter a was calculated as a weighted sum of cell parameters of these phases and the concentration of the second phase (hydride or carbide) X_HC was obtained. We should note that high correlation between phase concentration and Δa difference between the cell parameters of different phases results in bigger error in determining this parameters. However, the value of the averaged cell parameter was examined to be stable. The patterns for which the phase concentrations do not report the error bar were refined using only one phase.

The comparison between the average R_Pd-Pd obtained from the EXAFS data analysis and the equivalent value obtained from XRPD refinement (R_Pd-Pd = Δ<q>/√2, where Δ<q> = (1 − X_HC) Δa_Pd + X_HC a_Pd) resulted in a perfect agreement, within the corresponding error bars, see Table 1.

A more precise structural determination of PdC or PdH nanoparticles can, in principle, be obtained with a full profile analysis of the diffuse scattering [91–94], going beyond the Bragg-peak analysis performed in the presented Rietveld refinements. In the present case this more sophisticated analysis is however of difficult application as most of the diffuse scattering comes from the carbon support, that represents 95 wt.% of the material contributing to the scattering.

4. Conclusions

We have set a strategy to obtain structural information on supported palladium nano-particles relevant in catalysis by applying in situ and operando X-ray absorption and powder diffraction techniques. Analysis of XANES spectra allows determining whether hydride or carbide phase is formed in the nano-particles. Possibility to extract this information from XANES becomes extremely important in some cases, when the catalyst is exposed to a mixture of gasses, and the type of the phase (carbide or hydride) cannot be predicted in advance. In addition to the type of the phase determined from XANES, and interatomic distance obtained from EXAFS, XRPD analysis gives quantitative information on the phase concentrations.

The described scheme of experimental measurements and analysis may be applied to investigate the structural evolution of supported metal nano particle catalyst during catalytic processes in operando conditions, such as hydrogenation of hydrocarbons and will allow correlating catalytic properties of the nanoparticles with their structure and phase content.

Acknowledgments

A.L.B., A.A.G., K.A.L., A.V.S. and C.L. acknowledge mega-grant of Ministry of Education and Science of the Russian Federation (14.Y26.31.0001) for funding the research. A.L.B. and A.A.G. acknowledge the Grant of the President of Russia for Young ScientistsMK-3206.2014.2. K.A.L. acknowledges the scholarship of the President of Russia for PhD students and young scientists no. CII-2796.2016.1

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in the online version, at https://doi.org/10.1016/j.jcat.2016.02.065.

References