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In the framework of an extended phenomenological approach to phase transitions, we show that existing
nonlinear relation between local critical atomic parameters and phenomenological order parameter
induces the corresponding nonlinear temperature scaling transformation, and find the explicit form for
such a transformation. The theoretically predicted uniform function reproduces well the experimentally
observed behavior of order parameters in different systems.
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1. Introduction

It is well established in the literature that, despite the fact that
the phenomenological Landau theory of phase transitions [1,2]
deals with various types of variational free energy, it predicts, in
fact, a single set of the critical point exponents (α¼0, β¼1/2, γ¼1
and δ¼3) and thus belongs to the single “mean field” universal
class [3]. In what follows we use the terminology of the theory of
critical phenomena for the phenomenological theory, although the
latter does not treat critical phenomena properly. The phenom-
enological theory characterizes a system by the critical exponents
both outside and within the critical region, where temperature
behavior of a general function f(t) can be approximated by a simple
power function f(t)¼Atλ, with λ as a critical point exponent, and
t¼ |T-TC|/TC as a dimensionless variable to measure the temperature
difference with the critical temperature TC. A considerable body of
experimental data indicates that the real systems show regular
deviation from the behavior predicted in the framework of the
Landau phenomenological theory, and different universality clas-
ses were found experimentally in such systems. It is convenient to
consider such a discrepancy as caused by two main reasons: (i) the
phenomenological theory neglects critical fluctuations, i.e. one
ue des Martyrs, 38000 Gre-
assumes that the order parameter can be characterized by a single
value at any temperature, and (ii) the above theory uses the di-
mensionality for the fluctuation space lower than the marginal
dimensionality (dodn) (see, for example, [4–6]). These reasons
both relate to the critical fluctuations and are valid in the critical
region. However, the existence of background hetero- and homo-
phase fluctuations [7,8] was not considered in the analysis of the
above discrepancies. Here we highlight yet another reason for the
divergence of the phenomenological calculations and the corre-
sponding experimental data. Specifically, a transcendental relation
between a phenomenological order parameter and the corre-
sponding local atomic variables along with the nonlinear tem-
perature scaling transformation result in a deviation of the ex-
perimental values for the critical exponents from those predicted
by the Landau theory. We show how the nonlinear transformation
parameters depend on the fluctuation properties of the real sys-
tems far beyond the critical region.
2. Microscopic and macroscopic order parameters

2.1. Order parameter space

The Landau theory uses the increment δρ(r) of the probability
density, expressing the difference between the initial density in
high-symmetry parent phase, ρ0(r), and the final low-symmetry
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phase, ρd(r), expanded as a function of the basis functions of an
irreducible representation (IR) τkj of the space group G0 of the
parent phase [1,2]. This expansion has the form:

r r r r
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The wave vector k, located in the first Brillouin zone, char-
acterizes the translational symmetry of the basis functions kj

iφ (r),
which are the linear combinations of the local atomic functions,
associated with the crystalline structure. The index j labels the
representations kjτ of G0, and the index i (i¼1,…, n) runs over the
distinct basis functions spanning the n-dimensional IR τkj. For a
given j, the set of scalar coefficients kj

iη defines the order parameter
(OP), which describes the total distortion of the initial structure at
the transition. Usually a single irreducible OP breaks the symmetry
in a phase transition, so we only keep index i in Eq. (1).

The linear coupling between ηj and φj(r) in Eq. (1) allows
choosing either of these two quantities as a forming basis of the
relevant IR. As a consequence, the non-equilibrium thermo-
dynamic potential, associated with the transition, ΦL(T,p,δρ), can
be considered as a function of the ηi instead of the φi(r). The OP
components define the order parameter space εn that is irre-
ducible invariant space by the group G0. The δρ variation of the
probability density, associated with a phase transition, can be
considered as a vector in the representation εn-space, and the
components of i

eqη η= { } invariant vector, in the basis of this space,
are the values of the OP that minimize the thermodynamic po-
tential (for details see [9–11] and references therein).

Naturally, we consider the symmetry identity of ηi and φi(r) as
a general property which is also valid for the more general re-
normalization group approach. Indeed, a linear projection operator
of a space group induces basis functions for the relevant IR in the
form of the linear combinations of local atomic functions. The
latter are linked to the phase transition mechanism and were se-
lected as a result of a regular renormalization transformation, se-
parating critical and non-critical variables [6,12,13]. The integral
over the non-critical variables gives the equilibrium part of the
free energy Φ0, and unintegrated part forms the variational free
energy (Landau potential) ΦL(δρ).

The crystal geometry analysis of the different displacive type
structural phase transitions, in particular, martensitic transfor-
mations, shows that there exists a transcendental functional re-
lation between the value of the phenomenological OP ηi and the
magnitude of local atomic shifts, or the periodic character of its
distortions [11,14–16]. Same type of non-linear periodic depen-
dence was obtained for ηi as a function of probability density
variation for the segregation type phase transitions [17]. One can
conclude thus that the order-parameter space, denoted hereafter
sn, in general case (i.e. for the full range of the OP variation),
conceptually differs from the order-parameter space εn used ear-
lier in the description of continuous phase transitions. While εn is
a n-dimensional vectorial space, sn is a n-dimensional closed
functional space with boundary, whose structure depends on the
type of the variational parameters that identify the transition
mechanism [11].

2.2. Phenomenological order parameter and essential variational
parameters

We derive the general form of the function ηi(ξj), where the set
of ηi is a long-range phenomenological order parameter and ξj
represent variational local atomic parameters, i.e. short-range or-
der parameters (variation of probability for the segregation or
disorder-order transformation, magnitude of atomic displace-
ments for displacive type transitions etc.), by considering the
problem in the functional order-parameter space sn.
One makes use of the usual scheme for calculating η(ξ) by

finding the solution of the Euler's variational equation {δΦ/δη
(ξ)}¼0 that minimizes the free energy functional. The appropriate
choice for the latter in the case of continuous phase transition is
the classical Landau–Ginzburg functional
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where the integral is over a volume in the OP space. For the sake of
simplicity we treat a single-component or effective OP, while the
conjugate external field is neglected. The coefficient a1 is con-
veniently assumed to be a regular function of thermodynamic
variables (the temperature, pressure, etc.) and the remaining
coefficients are regarded as temperature- and pressure-in-
dependent parameters. The corresponding Euler's equation takes
the form:
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The boundary conditions are η(0)¼0 and η′(0)¼1. The first
condition indicates a coincidence of the origin points for the
variables η and ξ. The second one ensures their identical behavior
close to TC, i.e. it justifies the change of variables ξ-η in the
Landau theory. The differential Eq. (3) has exact general solution
expressed as

sn k, 40 0η η μ ξ ξ= ⋅ [ ( − ) ] ( )

In the above equation sn[μ(ξ�ξ0),κ]¼snu is the elliptic sine of
Jacobi, and μ and ξ0 are the arbitrary constants [18]. With the
applied boundary conditions, μ¼1 and ξ0¼0. The parameter
κ¼√(a2/|g|) is the modulus of the elliptic integral of the first kind
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The phase diagram of this system can be obtained by mini-
mizing the Landau potential
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where the OP η has the form of Eq. (4). The minimization of ΦL

with respect to the actual variational parameter ξ is expressed by
L L= ⋅Φ
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where cnu¼ u1 sn2− and dnu¼ 1 k sin2 2( − ξ) . Eq. (7) yields three
possible stable states: (i) The parent phase I for snu¼0 (origin of
the space s); (ii) The limit, non-Landau, phase II, given by cnu¼0
(snu¼1) (boundary of the space s), corresponding to the fixed
values η0 of the OP; (iii)’“Landau’“ phase corresponding to the
standard minimization ofΦL with respect to the OP η, whose value
η2¼�a1/2a2 varies between 0 and η0 (interior of the space s). The
function dnu has zeros only if κ¼1, however, even in this case dnu
vanishes simultaneously with cnu and no different solution of Eq.
(7) exists.
The stability condition has the form:
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The resulting phase diagram in the plane of thermodynamic
parameters (a1,a2) is shown in Fig. 1(a). The second-order phase
transition line a1¼0 separates parent I and Landau III phases. The
stability regions of Landau III and limit II phases adjoin along the



Fig. 1. (a) Phase diagram of the model Eq. (6). Solid, dashed and dashed-dotted
lines are respectively discontinuous first-order transition, continuous transition,
and limit of stability lines. O is the three-phase point. (b) Temperature dependence
of the order parameter for the path indicated in (a).

Fig. 2. Scaling ratio between temperature variables tn and t̃ for different values of
the modulus κ: 1�0, 2�0.8, 3�0.999.

Fig. 3. Reduced values of the order parameters for (1) Sn [19], (2) β-brass [25], and
(3) PrAlO3 [22] as a function of rescaled temperature, and compared to the theo-
retical curve (solid line). For the inset see the text.
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line a1¼�2a2. The first-order transitions line a1¼�a2 between
parent I and limit II phases meet in the three-phase point O two
latter lines. Notably, in the classical Landau theory the mandatory
positivity of the coefficient a2 in the potential (6) ensures the
global stability of the phases and the convexity of the potential for
large values of the OP. However, Eq. (4) shows that magnitude of
the OP cannot be arbitrarily large. This restriction raises the pos-
sibility of the global stable phase diagrams, even for negative va-
lues of a2 (Fig. 1(a)) [11].

Importantly, one can see in Fig. 1(a) that the temperature range
of the OP variation, that is, the stability region of Landau phase III,
is limited. Denoting the low-temperature stability limit for the
Landau phase by TL (Fig. 1(a)), the order parameter has the value
0 above TC, and varies between 0 and η0 for TC4T4TL, finally
reaching the saturation value η0 (conventionally, η0¼1) at TL and
then remains invariable for ToTL (Fig.1(b)). As no conventional
reasons give TL¼0 K, one makes use of a generalized form for the
dimensionless variable tn¼(T–TC)/(TC–TL). The latter distinguishes
the Landau approach, in which any phase has its thermodynamic
limit of stability at a finite temperature (or pressure) TL≠0 K, de-
fined by Eq. (8) ∂2ΦL/∂ξ2¼0, where the corresponding energy
minima disappear, and the Gibbs type consideration where the set
of minima exists at any temperature up to T¼0 K and the system
finds a lowest one for any given T.
3. Temperature scaling transformation

3.1. OP temperature behavior

As discussed above, the Landau theory uses identical tem-
perature dependencies for both a phenomenological OP η and
atomic variable parameters ξ. This means that the Landau poten-
tial [Eq. (6)] can be introduced for the latter as well:

L 1
2

2
4Φ ξ α ξ α ξ~ ( ) = + . By minimizing variational free energy LΦ̃ and

assuming α1¼α10 � t (α10¼const) one finds ξ¼ /21 2(−α α )∝ t . In
Section 2.2 we stressed the existence of the complex relation
between essential variational parameters ξi and measurable phe-
nomenological OP ηj. Thus, if one approximates tn10

1/2ξ α= ˜ , then a
phenomenological OP η from Eq. (4) takes form

t sn t k; 9n n0 10( )η η α= ( ˜ √ ) ( )·

We consider the elliptical sine as a circular sine with the ar-
gument scaled with the integral transformation (5): sn(x,κ)¼sin x̃
(factor π/2 is included in the definition of the argument) [18].
Making use of temperature as a variational thermodynamic para-
meter one can convert Eq. (5) into nonlinear temperature scaling
transformation

t
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Nonlinearity of such a temperature scaling transformation is
fully defined by the modulus κ, varying from 0 to 1. Fig. 2 shows
the scaling ratios between variables tn and t̃ for different values of
the modulus κ.

When κ¼0 the transformation is linear. It is worth reminding
that the corresponding sinusoidal form for OP as a function of ξ
was already employed earlier in the phenomenological models of
displacive type reconstructive phase transitions in crystals [11,14–
16] and of segregation transformations in complex fluids [17]. The
presented discussion thus complements this approach with the
temperature-controlled fluctuations.

To confirm the applicability of the presented approach to real
physical systems we choose three crystals undergoing continuous
phase transitions of different nature. Importantly, this choice is
supported by the existence of the reliable experimental data.



Fig. 5. Order parameter variation curves presented in different temperature scales.
(a) OP as a function of a dimensionless variable t¼ |T�TC|/TC, (b) as a function of
tn¼(T�TC)/(TC�TL), and (c) in function of the nonlinearly rescaled variable t̃ .
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(i) In metallic Sn the transition to superconducting state takes
place at TC ¼3.782 K [19]. The microscopic OP for such a transition
is an effective wave function Ψ(r) which is proportional to the
local value of the energy-gap parameterΔ [20,21]. The measurable
phenomenological OP is then the average normalized energy gap
in the elementary excitation spectrum of a superconductor [19].

(ii) The cooperative Jahn–Teller transition with the ordering in
the electronic degrees of freedom reduces the symmetry of the
perovskite PrAlO3 crystal from tetragonal to monoclinic at
TC ¼151 K. The electronic functions of the lowest crystal-field
double degenerated level Eg of the Pr3þ (in the parent cubic field)
form the basis functions of the relevant IR. The observable phe-
nomenological OP is then either the splitting between the doublet
levels in the ordered phase or the linearly coupled acoustic- and
optical-phonon modes of the same symmetry [22].

(iii) Disorder-to-order transformation in β-brass at TC¼740 K
[23–25]. The deviation of average probability of atoms to occupy
positions in a crystal lattice can be considered as the phenomen-
ological OP for ordering type transitions. The local variation of the
probability of occupation or, equivalently, population of the cor-
responding sites is then the essential variable parameter for the
transition.

The temperature TL, limiting the stability region of the Landau
phase, and the modulus κ, characterizing nonlinearity of the
temperature scaling transformation, are used as the fitting para-
meters. Fig. 3 shows the best fit for different OPs plotted versus
scaled normalized temperature t̃ and compared with the worked
out function t tsin

2
η (˜) = ˜π . Only the temperature range where

η≠const is displayed. The corresponding fitting parameters were
fixed as follows: Sn (TL ¼1.236 K; κ¼0.05), PrAlO3 (TL ¼61 K;
κ¼0) and β-brass (TL ¼490 K; κ¼0.77).

Clearly, the predicted uniform function reproduces well the
experimentally observed behavior of OPs in these different sys-
tems. To emphasize the role of the temperature scaling transfor-
mation, the experimental spots for the β-brass OP [24,26] are
plotted (inset of Fig. 3) versus the non-scaled normalized tem-
perature tn . Two curves in the inset display functions

tsin n1 2
1/2η = ( )π (solid line) and tsin n2 2

1/3η = ( )π (dashed line). It is

clear that close to TC the approximate function tn2
1/3η ∝ better re-

produces experimentally observed OP behavior, and we deduce
the critical exponent βE1/3 for β-brass.

3.2. Modulus of the temperature scaling transformation

At this point we see that the phenomenological approach deals
with two temperature scales. One can be termed real-temperature.
This temperature t (or, equivalently, tn ) is the measurable ther-
modynamic variable for the observable functions, describing the
behavior of a system. Another, termed rescaled temperature t̃ ,
Fig. 4. Measurable real temperature order parameter critical exponent as a func-
tion of the transformation modulus κ.
appears in the phenomenological approach after the re-
normalization procedure that eliminates the local microscopic
variables and replaces them with the macroscopic averaged vari-
ables, the components of the phenomenological OP. More pre-
cisely, they are the rescaled variables in the Landau theory for the
temperature behavior of different physical quantities or the cor-
responding critical exponents. The example of β-brass (Fig. 3)
clearly shows that the values for the OP critical exponent de-
pending on the temperature scale. To compare experimental re-
sults and phenomenological predictions it is important to take into
account the temperature scaling transformation Eq. (10). Fig. 4
shows the real-temperature OP critical exponent β as a function of
the modulus κ of such transformation.

Despite the fact that β¼1/2 is unambiguously predicted in the
Landau theory, we expect to obtain the different values for the
critical exponent measured in the real-temperature scale.

Fig. 5 summarizes the modification steps passed by the ex-
perimentally measured curve η(t) to be compared with the pre-
dictions of a phenomenological theory. Customary normalization
of the temperature scale by the corresponding critical temperature
TC (T-t) brings different curves to the single origin (Fig. 5(a)).
Then modified normalization introduced above merges the curves
at the origin tn¼0 (T¼TC) and at the saturation point tn¼1 (T¼TL)
of the OP variation range (Fig. 5(b)). Finally, nonlinear temperature
scaling transformation t tn → ˜ fits experimental points for different

systems in the uniform curve t tsin
2

η (˜) = ˜π (Fig. 5(c)), predicted
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in the extended phenomenological approach.
To elucidate the physical meaning of the modulus κ of the

nonlinear transformation (10) we consider the response function
G g e4 q1ξ π ξ˜ ( ) = ( ) ξ− − , where q g2 χ=− , and χ is the generalized sus-
ceptibility [26]. The quantity r qc

1= − is the correlation length of
the short-range order. The latter can be directly measured in a
scattering experiment when the radiation couples to the OP [5]. By
incorporating a generalized external field in Eq. (6) it is easy to
calculate the function a a31 2

2 1χ η= ( + )− and then derive the
modulus a g r/ c

2
2 0

2κ ε= = ⋅ − , where rc0 is the correlation length far
from the phase transition point (t∼1) and ε is the normalizing
factor. The modulus κ thus characterizes the background fluctua-
tional property of a physical system (i.e. far beyond the critical
region).

3.3. Landau-to-limit phase transition

We next discuss the specific features of the non-Landau limit
phase and manifestation of the Landau-to-limit-state transfor-
mation. The limit phase is defined above (Section 2.2) with respect
to the classical Landau phase by the OP that retains the maximal
value η0¼const independent of the temperature variation. A
considerable experimental data unambiguously indicate that such
states do exist in various physical systems. The examples of Sec-
tion 3.1 provide typical cases of the temperature behavior, pre-
dicted here (Fig. 1(b)). It should be stressed that for a given system
in the possible but not necessarily perfect limit state the degree of
order η0r1 can be realized. This means that the limit phase is the
state with the temperature-independent stable equilibrium be-
tween perfect order and partial disorder. One deals with a satu-
rated state, perfectly ordered is a particular case. The latter prop-
erty along with the absence at TL of a singularity in the function
η(t) provides the emergence of the Landau-to-limit-state transi-
tion. One can show that the measurable thermodynamic functions
such as entropy, latent heat or specific heat are proportional to

t t/ cos0 2
η η∂ ∂ = ˜π . However, this latter has no singularities and

goes to zero at TL (or, equivalently, at t̃ ¼1). Thus, these functions
don’t show any jump-like behavior, divergence or different sin-
gularities at the corresponding transition point. From this, it is
clear that the Landau-to-limit-state transformation can be identi-
fied neither as first nor as second order phase transition.
4. Conclusions and outlooks

Two assumptions should be considered to ensure the generality
of the presented approach. Firstly, only the case of the single-di-
mensional OP was treated in this work. However, the temperature
behavior of the OP in the Landau-type phenomenological ap-
proach is controlled by the coefficient a1 [see Eq. (2) and (6)]. It is
associated with the invariant quadratic in OP components
a I a ... n1 1 1 1

2 2η η= ( + + ) of the free energy expansion, and a1 specifies
the uniform functional form of the temperature dependence ηi(t)
for each of the multiple OP components as well as for the corre-
sponding single-component effective OP. The Fig. 3 further con-
firms this as the uniform function there reproduces the tempera-
ture behavior of the single- (β-brass), two- (Sn) and three-com-
ponent (PrAlO3) phenomenological OPs. Secondly, here we deal
with the free energy expansion, restricted to the fourth degree
term in OP components, while the above argument on the un-
iqueness of the coefficient a1 is still valid. Including the higher
order terms modifies the stability conditions and the form of
stability boundaries and transition lines in the phase diagram, but
does not affect the temperature-dependent part of the free energy.

Summarizing, we have shown in the framework of an extended
phenomenological approach that there exists a uniform function
describing the OP temperature variation. The renormalization
procedure, eliminating the local atomic variables and replacing
them by the phenomenological order parameter components, is
accompanied by the nonlinear temperature scaling transforma-
tion. Rescaled temperature is an essential thermodynamic varia-
tional parameter of the Landau theory with respect to which
mean-field critical exponents are predicted unambiguously while
the corresponding experimental values are obtained in the real-
temperature scale. The general form of such transformation is
found to be the elliptic integral of the first kind.
Acknowledgements

The article is dedicated to 75th birth anniversary of Professor
Yuri Gufan who guided the author through the world of phase
transitions. Drs I. Lebedyuk and A. Dmitriev are warmly ac-
knowledged for their assistance in calculations. Prof W. Figueiredo
and Dr E. Katz are acknowledged for helpful discussions. The au-
thor is grateful to Dr. V. I. Yukalov who attracted his attention to
more general aspects of the problem.
References

[1] L.D. Landau, Zhurnal Eksperimentalnoi i Teoreticheskoi Fiziki, 7 (1937) 19; 627.
Translation, In: Collected Papers of L.D. Landau, D. Ter Haar (Ed.), Pergamon,
Oxford, 1965, p.193; 216.

[2] L.D. Landau, E.M. Lifshitz, Statistical Physics, 3rd ed., Pergamon, Oxford, 1980.
[3] H.E. Stanley, Introduction to Phase Transitions and Critical Phenomena, Oxford

University Press, Oxford, 1971.
[4] A. Aharony, B.I. Halperin, Phys. Rev. Lett. 35 (1975) 1308.
[5] J. Als-Nielsen, R.J. Birgeneau, Am. J. Phys. 45 (1977) 554.
[6] J.J. Binney, N.J. Dowrick, A.J. Fisher, M.E.J. Newman, The Theory of Critical

Phenomena, Clarendon Press, Oxford, 1992.
[7] V.I. Yukalov, Phys. Rep. 208 (1991) 395.
[8] V.I. Yukalov, Intern J. Mod. Phys. 17 (2003) 2333.
[9] Yu. Gufan, Structural Phase Transitions, Nauka, Moscow, 1982 (in Russian).
[10] J.-C. Tolédano, P. Tolédano, The Landau Theory of Phase Transitions, World

Scientific, Singapore, 1987.
[11] P. Tolédano, V. Dmitriev, Reconstructive Phase Transitions in Crystals and

Quasicrystals, World Scientific, Singapore, 1996.
[12] K.G. Wilson, J. Kogut, Phys. Rep. 12C (1974) 75.
[13] Th. Niemeijer and, J.M.J. van Leeuwen, in: C. Domb, M.S. Green (Eds.), In Phase

Transitions and Critical Phenomena, vol. 6, Academic Press, London, 1976,
p. 425.

[14] V. Dmitriev, S. Rochal, Yu Gufan, P. Tolédano, Phys. Rev. Lett 60 (1988) 1958.
[15] K. Bhattacharya, S. Conti, G. Zanzotto, J. Zimmer, Nature 428 (2004) 55.
[16] M.S. Miao, W.R.L. Lambrecht, Phys.Rev.Lett. 94 (2005) 225501.
[17] V. Dmitriev, P. Tolédano, A.M. Figueiredo Neto, I. Lebedyuk, Phys. Rev. E 59

(1999) 771.
[18] H.T. Davis, Introduction to Nonlinear Differential and Integral Equations, Do-

ver, New York, 1962.
[19] P. Townsend, J. Sutton, Phys. Rev. 128 (1962) 591.
[20] J. Bardeen, L.N. Cooper, J.R. Shriffer, Phys. Rev. 108 (1957) 1175.
[21] L.P. Gor’kov, Sov. Phys.—J. Exp. Theor. Phys. 9 (1959) 1364.
[22] R.J. Birgeneau, J.K. Kjems, G. Shirane, L.G. Van Uitert, Phys. Rev. B 10 (1974)

2512.
[23] J.C. Norvell, J. Als-Nielsen, Phys. Rev. B 2 (1970) 277.
[24] D.R. Chipmann, C.B. Walker, Phys. Rev. B 5 (1972) 3823.
[25] O. Rathmann, J. Als-Nielsen, Phys. Rev. B 9 (1974) 3921.
[26] A.Z. Patashinskii, V.L. Pokrovskii, Fluctuation Theory of Phase Transitions,

Pergamon Press, Oxford, 1979.

http://refhub.elsevier.com/S0921-4526(15)30049-1/sbref1
http://refhub.elsevier.com/S0921-4526(15)30049-1/sbref2
http://refhub.elsevier.com/S0921-4526(15)30049-1/sbref2
http://refhub.elsevier.com/S0921-4526(15)30049-1/sbref3
http://refhub.elsevier.com/S0921-4526(15)30049-1/sbref4
http://refhub.elsevier.com/S0921-4526(15)30049-1/sbref5
http://refhub.elsevier.com/S0921-4526(15)30049-1/sbref5
http://refhub.elsevier.com/S0921-4526(15)30049-1/sbref6
http://refhub.elsevier.com/S0921-4526(15)30049-1/sbref7
http://refhub.elsevier.com/S0921-4526(15)30049-1/sbref8
http://refhub.elsevier.com/S0921-4526(15)30049-1/sbref9
http://refhub.elsevier.com/S0921-4526(15)30049-1/sbref9
http://refhub.elsevier.com/S0921-4526(15)30049-1/sbref10
http://refhub.elsevier.com/S0921-4526(15)30049-1/sbref10
http://refhub.elsevier.com/S0921-4526(15)30049-1/sbref11
http://refhub.elsevier.com/S0921-4526(15)30049-1/sbref12
http://refhub.elsevier.com/S0921-4526(15)30049-1/sbref12
http://refhub.elsevier.com/S0921-4526(15)30049-1/sbref12
http://refhub.elsevier.com/S0921-4526(15)30049-1/sbref13
http://refhub.elsevier.com/S0921-4526(15)30049-1/sbref14
http://refhub.elsevier.com/S0921-4526(15)30049-1/sbref15
http://refhub.elsevier.com/S0921-4526(15)30049-1/sbref16
http://refhub.elsevier.com/S0921-4526(15)30049-1/sbref16
http://refhub.elsevier.com/S0921-4526(15)30049-1/sbref17
http://refhub.elsevier.com/S0921-4526(15)30049-1/sbref17
http://refhub.elsevier.com/S0921-4526(15)30049-1/sbref18
http://refhub.elsevier.com/S0921-4526(15)30049-1/sbref19
http://refhub.elsevier.com/S0921-4526(15)30049-1/sbref20
http://refhub.elsevier.com/S0921-4526(15)30049-1/sbref21
http://refhub.elsevier.com/S0921-4526(15)30049-1/sbref21
http://refhub.elsevier.com/S0921-4526(15)30049-1/sbref22
http://refhub.elsevier.com/S0921-4526(15)30049-1/sbref23
http://refhub.elsevier.com/S0921-4526(15)30049-1/sbref24
http://refhub.elsevier.com/S0921-4526(15)30049-1/sbref25
http://refhub.elsevier.com/S0921-4526(15)30049-1/sbref25

	Phenomenological order parameter and local parameters fluctuation far beyond the critical region of the continuous phase...
	Introduction
	Microscopic and macroscopic order parameters
	Order parameter space
	Phenomenological order parameter and essential variational parameters

	Temperature scaling transformation
	OP temperature behavior
	Modulus of the temperature scaling transformation
	Landau-to-limit phase transition

	Conclusions and outlooks
	Acknowledgements
	References




