
Experimental Analysis of Approaches to
Multidimensional Conditional Density

Estimation?

Anna Berger1[0000−0002−0268−2370] and Sergey Guda1,2[0000−0002−2398−1847]

1 Institute of Mathematics, Mechanics, and Computer Science,
Southern Federal University, Milchakova 8a, 344090 Rostov-on-Don, Russia

2 The Smart Materials Research Center, Southern Federal University,
Sladkova Street 174/28, 344090 Rostov-on-Don, Russia

{anna.ig.berger, gudasergey}@gmail.com

Abstract. Recently several original methods for conditional density es-
timation (CDE) have been developed. The abundance of information
comprised by the full conditional density of target variables is great when
compared to the regression or quantile regression estimates. Still, there
are only few independent experimental investigations of these methods,
especially concerning a multidimensional target variable, and this paper
aims to address this issue. We consider several approaches such as ker-
nel density estimation, reduction to binary classification, Näıve Bayes,
Bayesian Network, ”varying coefficient“ approach, random forests and
Approximate Bayesian Computation applied to a conditional density es-
timation problem. We examine these methods when applying to vari-
ous datasets together with the dependency of the methods’ performance
on different parameters including the number of irrelevant covariates,
smoothness, and flatness of the distribution. Considered datasets include
artificial models with required properties and with the known exact value
of CDE evaluation measure and a real-world dataset arisen from the
problem of structure recognition by XANES spectra, which is reduced
to a regression task with a complex multimodal probability distribution
of the target variable. The special attention is paid to the computation of
the evaluation measure as the methods based on the direct optimization
of the loss employ its imprecise but fast approximation which results in
the poor prediction quality for datasets with a small target variance.

Keywords: conditional density estimation, multidimensional regression, exper-
imental analysis

1 Introduction

Conditional density estimation of a random variable z ∈ R can be considered a
generalization of a regression problem. Standard regression returns point esti-
mation of a target variable z. It minimizes the standard deviation leading to a
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prediction of the target expectation. In case of a multimodal or skewed distribu-
tion, the expectation value has a smaller probability than the mode — the most
probable value. But a researcher expects namely the latter to obtain as a result
of the regression algorithm as it is implied by the word “expectation”.

To overcome the limitation of the point regression estimation, in many appli-
cations such as time series analysis, the quantile regression is employed. For the
given probability, it determines the minimal interval having the form (q,+∞)
and containing target value [1]. This approach makes it possible to predict the
interval containing the target variable for the given confidence level. Another
way of generalization is to consider regression function X → Z as a manifold in
ambient space X × Z. It enables the construction of prediction regions with a
given confidence level [3,9,10].

Still, the distribution of the target variable can happen to be too complex
to be well estimated via quantile regression: for instance, if multimodality or a
significant skew of the response is present in the data. In this case, the standard
and quantile regression may be insufficient for the proper data analysis and
solving the problem, while the estimator of full conditional density provides a
more comprehensive accounting of the target variable.

Several recent works utilize the CDE of the full probability distribution in
various application domains and, by doing so, achieve substantial improvements.
The approach proves itself especially in settings with complicated sources of
errors which are widespread in physics in general [2] — and in Cosmology [14],
in particular.

The other possible scope of application for CDE is multitask learning. If the
objective function can be decomposed into several autonomous parts (e.g. error
squares for different target coordinates), then the multitask problem splits itself
into an independent problem for each target component. However, estimation
of some non-decomposable target, such as the mode of the target variable, is a
different matter. In this case, one cannot optimize the components separately as
the combination of univariate target component modes is, generally speaking,
not the mode of the multivariate target. The mode regression was developed for
univariate case (see [8], [15]). Nevertheless, to the best of the authors’ knowl-
edge, currently, there are no methods for multi-target mode regression, except
using CDE. While namely these methods, for example, are needed to solve the
problem of predicting the molecular structure by a given XANES spectrum (see
[4] Section 3.5.2). Due to the independence of the XANES spectrum on symme-
try transformations of molecule geometry and some geometry parameters, the
molecule geometry probability distribution has multiple modes, which are hard
to predict with ordinary regression techniques.

As of today, there is a lack of comparison of different CDE methods in litera-
ture. This paper aims to fill this gap and provides the experimental overview and
comparison of these methods when applying to the data from various distribu-
tions. We demonstrate the soundness of such methods as kernel density estima-
tion, reducing to binary classification, Näıve Bayes, Bayesian Network, ”varying
coefficient“ approach, random forests, Approximate Bayesian Computation and
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study the dependency of the methods performance quality on volatility degree
when x changes, correlation between z components, the number of irrelevant
covariates, flatness of the underlying distribution.

For measuring quality performance CDE loss is employed as the most com-
monly used measure for this type of problem. It implies calculating several mul-
tivariate integrals, which are not always computed precisely especially in the
algorithms, which directly optimize the CDE loss. That motivates us to study
the error of computing the CDE loss by different methods separately.

There are several techniques, which can be adopted for conditional density
estimation. Kernel density estimation is one of the simplest of them though
it heavily suffers from the curse of dimensionality in the multivariate setting.
Another view on a CDE problem can be reformulating it in terms of a binary
classification problem and further utilizing existing powerful binary classifiers.
The assumption of conditional independence of response variables results in the
Näıve Bayes approach, and, as in many cases it is not fulfilled, but the rela-
tionship among the target variables is known, the Bayesian Network as well can
be built to model the outcome. A different view of the problem is presented
by a group of ”varying coefficient“ approaches which include FlexCode [7] and
RFCDE [13] and exploit expanding the conditional density function into orthog-
onal series. The combination of CDE and Approximate Bayesian Computation
(ABC) incorporates the advantages of both approaches and leads to better den-
sity estimates [6].

The remainder of the paper is structured as follows. We discuss the existing
approaches to CDE in more detail in Section 2. Section 3 addresses the chosen
performance measure and its approximations employed in several methods. In
Section 4 the datasets under consideration are described. In Section 5 we present
the results and the reflections on our findings. We conclude the research and
present some suggestions for future work in Section 6.

2 CDE approaches

Assume we observe the finite sample of data {(xi, zi)}ni=1 with multidimensional
covariates xi ∈ Rm and a multidimensional response zi ∈ R`. The goal of condi-
tional density estimator methods is to reconstruct the full conditional probability
density function p(z|x) as, in general, it provides us with a more comprehensive
understanding of the underlying probability distribution than point estimations
of conditional mean and variance. The following paragraphs give a brief descrip-
tion of the methods which can be employed for conditional density estimation.

Kernel Density Estimation. The first approach to this problem is esti-

mating p(x, z) and p(x) separately and then blending them as p(z|x) = p(x,z)
p(z) .

The estimation of a joint probability function p(z, x) and a marginal probability
function p(x) can be performed with kernel density estimators (KDE).

Binary Classification Approach. One more approach to conditional den-
sity estimation is based on reformulating the problem of density estimation as
a binary classification problem. To accomplish it, we assign class c = 1 to all
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points of the given dataset, sample new points from a uniform distribution in a
bound rectangle of our data sample and then treat the latter as the elements of
the class c = 2. Applying then any existing classifier such as logistic regression
or decision trees, we calculate probabilities p(c|x, z) and p(c|x).

The number of sampled points is the same as in the given data sample to
keep the dataset balanced. This approach allows us to estimate again p(x, z)
and p(x) separately and, after that, compute p(z|x):

p(x, z) =
1

Vxz

p(0|x, z)

p(1|x, z)
, p(x) =

1

Vx

p(0|x)

p(1|x)
, p(z|x) =

p(x, z)

p(z)
,

where Vxz and Vx are the volumes of bound rectangles of {(xi, zi)}ni=1 and
{xi}ni=1 samples correspondingly.

Näıve Bayes Approach. Näıve Bayes approach can be applied under the
assumption of conditional independence of z coordinates — response variables
z(i). It enables application of univariate methods to the problems with multidi-
mensional z.

Bayesian Network Approach. The extension of the previous estimator is
the approach based on a Bayesian network built on the response variables z(i).
The parent-child dependencies of response variables z(i) should be defined at
the training step and should represented via a directed acyclic graph. Then, the
conditional density estimation is performed as follows:

p(z|x) = p(z(1), z(2), . . . , z(`)|x) =
∏̀
i=1

p(z(i)|Parents(z(i)),x).

FlexCode approach proposed in the paper [7] involves expanding the con-
ditional density function into a series in which each coefficient can be estimated
directly via regression if the chosen basis is orthonormal. This approximation
reduces the multidimensional conditional density estimation problem to point
estimation problem which is more straightforward to fulfill.

RFCDE: Random Forests for Conditional Density Estimation. The
paper [13] further develops the idea of a series expansion and focuses on building
ensembles of regression trees suggesting the method called Random Forests for
Density Estimation (RFCDE). Its main contribution is the way of choosing the
partition splits in the nodes of the trees: instead of minimizing traditional mean-
squared loss, they optimize the loss specific to CDE (which will be discussed in
Section 3). Several simplifications allow them to keep the optimization process
computationally feasible.

NNKCDE: Approximate Bayesian Computation Method (ABC-
CDE method). The last paper to consider in the scope of this research is [6],
which suggests an efficient methodology for non-parametric conditional density
estimation for the problems with inaccessible or intractable likelihood and avail-
able though limited data simulations. It aims for estimating the posterior density
with the means of Approximate Bayesian Computation (ABC). The suggested
framework combines the advantages of both ABC and CDE approaches and
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proposes not only the way of estimating the posterior density upon observing
high-dimensional data but also the way of comparing the performance of ABC
and other related methods and choosing the optimal summary statistics.

During the first step of the algorithm, the training set is constructed via a
simple ABC rejection sampling algorithm for choosing the sample points x close
to the given x0 according to some pre-defined distance function d(x,x0) and
δ such as d(x,x0) < δ. This training set is further employed for building the
conditional density estimator. For this purpose the authors of the paper [6] adopt
the FlexCode estimator from their previous paper [7], nevertheless mentioning
the flexibility of the estimator choice. All the advantages mentioned above of the
FlexCode estimator apply to this problem as well.

3 CDE measure

One of the most straightforward approaches to assessing the quality of the ob-
tained density function is evaluating some of its point estimates such as me-
dian, mean or any appropriate raw or central n-th moments of the distribution.
The problem is that in many cases, such as multimodality, asymmetry and het-
eroscedastic noise, the point estimates do not fully describe the underlying data
structure and therefore, cannot be considered representative for estimation qual-
ity assessment.

In order to quantify the distribution in a more comprehensive way, we need
to measure the difference between the estimation and the true values in all
data points of the sample. The most commonly used metric for estimating the
discrepancy between exact p(z|x) and approximate p̂(z|x) is the mean integrated
square error (MISE):

MISE = Ex
(∫

(p̂(z|x)− p(z|x))2dz

)
.

As it is hard to calculate, the reduced measure is used:

L(p, p̂) =

∫∫
p̂2(z|x)dF (x)dz − 2

∫∫
p̂(z|x)p(z|x)dF (x)dz =

=

∫∫
p̂2(z|x)dF (x)dz − 2

∫∫
p̂(z|x)dF (x, z)

(1)

where F (x) is a marginal cumulative distribution function. L(p, p̂) differs from
MISE by a constant, which doesn’t depend on the estimator p̂. MISE general-
izes the mean squared error and controls the overall MSE of the entire density
function. It is closely related to the L2 error of estimating a function.

If the “varying coefficient” approach [7] is employed, then the MISE measure
can be rewritten in a form more convenient for optimization:

L̂(p, p̂) =

I∑
i=1

1

n

n∑
k=1

β̂2
i (xk)− 2

1

n

n∑
k=1

p̂(zk|xk). (2)
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This is also the loss employed in [13] for defining the optimal split in tree nodes.
Its properties allow the execution to be performed in a parallel manner which
makes the optimizational process relatively fast.

For our experiments, we employ two approaches to computing the MISE:
straightforward (1) which involves computing the multiple integral with rectan-
gle rule in the bounded rectangle of the training sample and the approximate one
(2) suggested in [7]. We also examine these MISE losses by comparing them with
the best possible loss computed for the datasets with the pre-defined distribution
and study the errors gained.

4 Datasets

We evaluate the approaches discussed in Section 2 on several datasets to reveal
the strengths and weaknesses of the methods and to assess the problems they
could help to overcome. They include artificial datasets with required proper-
ties and with the known exact value of CDE evaluation measure and practical
significant multimodal dataset [11,12].

Fig. 1: (a) SURD(nx = 10, ny = 1, nz = 2, d = [0.1, 1], σ = 0.01, α = [0.3, 0.3],
ϕ = π

4 ), (b) density of the distribution given in (a) at x = 0.

The artificial datasets are generated from one general scheme of sampling by
fixing different parameters. We consider the smoothed uniform rotated distribu-
tion SURD(nx, ny, nz, d, σ, α, ϕ):

x(i), y(j) ∼ Uniform(0, 1), i = 1..nx, j = 1..ny,

z̃(k) ∼ Uniform(0, d(k)) + Normal(0, σ), k = 1..nz,

z = Qz̃ +α

nx∑
i=1

xi.

(3)
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Here x(i) are relevant covariates, y(j) are irrelevant covariates, Q stands for
the orthogonal rotation matrix which for every pair of coordinates (2k − 1, 2k),
k = 1..nz

2 rotates the point by the degree of rotation ϕ. The variance of the
distribution along axes is determined by the vector d while the α parameter
explicitly controls the dependence of z on the values of x. The σ parameter
regulates the smoothness of the distribution. Figure 1 shows the example of
sampling according to the described scheme together with the density of the
distribution at the fixed point x = 0.

The artificial univariate multimodal dataset Fork(nx, ny, m, σ) (considered
in the RFCDE paper [13]) is generated by the following scheme to verify our
findings from the multivariate case: x(i), y(j) ∼ Uniform(0, 1), i = 1..nx, j =

1..ny, s ∼ Multinomial
(
1, 1

m , ...,
1
m

)
, v = (v1, ...vm), vi = −1+ 2(i−1)

m−1 , k = 〈s,v〉,
z ∼ Normal

(
k
∑nx

i=1 x
(i), σ

)
. Here x(i) are relevant covariates, y(j) are irrelevant

covariates, s is an unobserved one-hot binary vector covariate which introduces
multimodality in the conditional densities, m ≥ 1 is the parameter controlling
the number of peaks in the multimodal distribution. Angle brackets 〈·, ·〉 in the
equation for k denote the dot product.

The practically significant multimodal dataset containing examples for the
PyFitIt software [11,12] was built by calculating XANES spectra for various
geometry modifications of [Fe(terpy)2]2+ complex by FDMNES [5]. Then the
spectra were smoothed to get the same shape as the experimental one. The
argument x here is a XANES spectrum (dimension = 86), the target variable z
is a 6-dimensional vector of geometry parameters. The dataset was constructed
in such a way that the partial probability distribution p(z) of the target z is
uniform in a rectangle [−0.3, 0.5]6. To check the results, we use the dataset
Feterpy combined with reduced number of geometry parameters: 3-dimensional
z. Feterpy dataset contains 729 spectra, Feterpy combined — 500.

5 Experiments

During our experiments we determine the relative error of the method as

|Lcur − Lbest|
|Lbest|

, (4)

where L is defined in (1). All KDE estimators are run with a Gaussian kernel
and a bandwidth h set to 0.4. The base classifier for the Binary Classification
Approach is the LGBM classifier from the LightGBM framework that uses tree-
based learning algorithms with n estimators = 200 and learning rate = 0.005.
The base one-dimensional estimator for the Näıve Bayes approach is set to KDE
with the same parameters. The RFCDE model is employed with the following set
of parameters: n trees = 1000, mtry = 4, n basis = 15, node size = 20. The base
estimator for Bayesian Network is the RFCDE model with the abovementioned
parameters. We utilize the NNKCDE model and set its parameters to k = 10,
bandwidth = 0.2. Any other parameters in the algorithms under consideration
are set to default.
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Fig. 2: Relative errors for straightforward (red) and approximate (blue) ap-
proaches for computing the MISE loss for
(a) SURD(nx = 2, ny = 1, nz = 2, d = [0.1, 1], σ = 0, α = [0, 0], ϕ = π

4 ),
(b) SURD(nx = 2, ny = 1, nz = 2, d = [1, 1], σ = 0, α = [0, 0], ϕ = π

4 ),
(c) SURD(nx = 2, ny = 1, nz = 3, d = [1, 1, 1], σ = 0, α = [0, 0, 0], ϕ = π

4 ),
(d) Fork(nx = 10, ny = 1, m = 2, σ = 1).

Fig. 3: Relative errors for CDE methods depending on α = [α, α], α ∈ (0, 0.6)
for (a) SURD(nx = 10, ny = 0, nz = 2, d = [1, 1], σ = 0, ϕ = π

4 ) and (b) same
as (a) except d = [0.1, 1] .
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Fig. 4: Relative errors for CDE methods depending on (a) d = [d, 1], d ∈ (0, 1)
for SURD(nx = 10, ny = 0, nz = 2, α = [0.3, 0.3], σ = 0, ϕ = 0) and (b)
ϕ ∈

(
0, π4

)
for SURD(nx = 10, ny = 0, nz = 2, α = [0.1, 0.1], d = [0.1, 1],

σ = 0).

We start our experiments by assessing the errors obtained by two approaches
to calculating the MISE measure discussed in Section 3. The parameter under
investigation is the number of grid points taken along each axis to compute
the integrals in either straightforward (1) or approximate (2) manner. Figure 2
displays that the approximate approach needs a more frequent grid to achieve
the competitive relative error rate in comparison with more computationally
expensive straightforward numerical integration especially for nz = 3. Another
interesting observation is the fact that the data points flatness along one of the
axes leads to the worse performance of both approaches which can be explained
by the inability of both numerical integration and employed cosine basis to
calculate integral for the flattened data. It can be also noted that increasing the
dimensionality of the target variable nz heavily influences the relative error rate
for the thinner grid. In the univariate case, two approaches to estimating the
MISE loss gained by the estimator appear to exhibit better results as it is shown
in Figure 2d.

Henceforth, in our experiments, we employ the straightforward approach for
evaluating the MISE loss as it requires fewer points of the grid to accomplish
more true-to-life values obtained by the loss of the algorithm.

The next parameter to study is α which regulates the dependence of z on
the values of x. For simplicity we set α = [α, α]. We evaluate all conditional
density estimators discussed in Section 2 except FlexCode which implementa-
tion provided by the authors of the paper [7] does not support multidimensional
datasets. According to Figure 3, all concerned CDE algorithms indicate the sim-
ilar tendency: the stronger the dependence between z and x, the more difficult
is to provide the correct estimations for the fixed x. Flatness of data along one
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Fig. 5: Relative errors for CDE methods depending on ny ∈ [1, 20] for
(a) SURD(nx = 1, nz = 2, α = [2, 2], d = [1, 1], σ = 0, ϕ = 0)
(b) Fork(nx = 1, m = 2, σ = 0.1).

of the axes even stronger obstructs the correct conditional density estimation as
can be seen when analyzing Figure 3a against Figure 3b.

Furthermore, we examine the dependency on data flatness along one of the
axes separately as it proved to be critical for the quality of estimation in the
previous experiments. Without loss of generality, we vary the first component of
d. Figure 4a confirms the idea expressed in the previous paragraphs: the closer
the variances along axes to each other, the better the algorithms model the
underlying distribution. Figure 4a indicates as well that the family of orthogonal
series approaches shows the best performance among concerned methods though
still suffering from an imbalanced variance of data along different axes.

Another interesting parameter to discuss is ϕ which determines the depen-
dency between target variables z(i) by controlling the degree of the data points
rotation Figure 4b. One can observe that the Binary Classification Approach
approximation becomes noticeably inaccurate with amplification of the angle ϕ.
The estimation appears to be imprecise as the volume of the bounded rectangles
Vx and Vxz can be sufficiently larger than the area in which the true density
values have fallen. This fact leads to the approximation error becoming larger
and explains the deteriorated performance of this method with an increased ϕ.

Table 1: Values of CDE evaluation measure (1) for Feterpy datasets

kde kde const naive kde
simple
classde

rfcde
bayes network

rfcde
nnkcde

Feterpy -0.6 -0.4 -0.6 3.9 - -4.5 -7.7

Feterpy
combined

-1.4 -0.8 -1.3 -1.8 -5.5 -4.2 -8.7
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Finally, we evaluate the influence of the number of irrelevant covariates ny on
the performance of the CDE algorithms. Figure 5a indicates that while RFCDE,
NNKCDE and Bayesian Network approach (employing RFCDE one-dimensional
estimator internally) show the lowest relative error among all the methods, their
performance deteriorates with growing ny. A similar tendency can be observed
for the family of orthogonal series approaches in the univariate case in Figure 5b.

Practically significant datasets have the drawback: the exact value of the
CDE evaluation measure is not known. So, the relative error (4) can’t be calcu-
lated and we have to be content with the value (1). We calculate the measure
values for considered algorithms for the dataset with 6-dimensional z and for
the dataset with combined geometry parameters (see Feterpy combined in [11]),
which has 3-dimensional z. The results are collected in Table 1. The NNKCDE
algorithm outperforms the others both by quality and speed. RFCDE required
more than 80 Gb of memory for Feterpy dataset and didn’t finish calculation.

6 Conclusion

This research aims to investigate several approaches to conditional density esti-
mation since point estimations or quantile regression do not suffice, for example,
if a multimodal or skewed distribution is considered. Specifically, we perform the
comparative study of several methods employing inherently different techniques:
Kernel Density Estimators, Binary Classification Approach, Bayesian Networks,
the family of orthogonal series approaches and one of the most recent models —
NNKCDE which implements the ABC-rejection scheme. We provide an overview
of these methods and varying the parameter of two synthetic datasets (for multi-
variate and univariate cases) and practically significant multimodal dataset, we
demonstrate the strengths and the weaknesses of the algorithms under consid-
eration. Not only concern our experiments the algorithms themselves, but they
also tackle the problem of the quality of the loss computation performed with
two approaches.

There are multiple directions in which this research may progress. During the
experiments, we did not manage to examine datasets with a high dimensional
target variable z. The problem is that the straightforward (1) way of calculat-
ing MISE measure is computationally exhaustive while the second (2) produces
inaccurate estimation. So we have to either consider another measure or invent
new algorithms of the MISE optimization suitable for a high-dimensional target.
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