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Abstract—Nowadays, an important area of research in the field of two-dimensional (2D) materials and their
surface characteristics is acceleration of the process of searching for synthesis parameters for new structures
with unique properties. The achieved level of development of artificial intelligence and especially machine
learning makes it possible to use these techniques to solve a wide range of problems, including in the field of
2D-materials science. This article describes the current state of technologies of artificial intelligence and its
subset, machine learning. The presented literature review describes the capabilities of machine-learning tech-
nologies for solving problems in the field of 2D-nanomaterials both at the stages of computer design and
chemical synthesis and diagnostics of the obtained 2D-nanostructures and their surfaces. Much attention is
given to the application of machine-learning technologies to find new 2D materials with specified character-
istics that can be successfully used in a number of promising areas of application.
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INTRODUCTION
Two-dimensional nanostructures occupy a special

place among nanomaterials. An important stage in the
development of this area was the discovery of
graphene and the subsequent study of its unique prop-
erties [1]. Due to their unique characteristics,
graphene-like materials are now in demand in various
fields, including biomedical technologies [2]. Unfold-
ing on a wide front, research has opened the way for a
number of innovative applications [3]. Recently, sci-
entific research in this area has not been limited only
to graphene-like nanostructures [4]. 2D materials have
extremely interesting properties for use in electrocata-
lytic processes [5]. Two-dimensional nanocatalysts
turned out to be no less promising for photocatalytic
processes of CO2 reduction [6].

An important feature of two-dimensional nano-
structures with a developed surface is the possibility of
their use as highly sensitive sensors [7]. The unique
characteristics of some classes of two-dimensional
nanostructures make it possible to use them in new
types of electrochemical batteries and fuel cells [8].
Recent research in the field of defect engineering has
allowed an increase in the efficiency of 2D photocata-
lysts for organic synthesis processes [9]. Recently,
active research has begun on new classes of sub-
stances—van der Waals heterostructures, which are
based on two-dimensional layers [10]. New classes of

two-dimensional materials such as borophenes [11]
and MXenes [12] may turn out to be very promising for
practical innovative application. It should be noted
that, due to the special characteristics of two-dimen-
sional nanostructures, various special approaches are
being developed for their study, including for nanodi-
agnostics using synchrotron-radiation sources [13].
The demands for development of the high-tech sector
of the economy dictate the need to accelerate the
search for new two-dimensional materials, and new
end-to-end technology based on artificial intelligence
opens up significant prospects in this area.

The objective of this paper is to review current
research in the field of artificial intelligence and
machine-learning technologies for two-dimensional
materials.

INTRODUCTION TO ARTIFICIAL-
INTELLIGENCE TECHNOLOGY 

AND METHODS OF MACHINE LEARNING

In over half a century of development, artificial
intelligence has acquired a solid theoretical base,
establishing itself as an independent scientific direc-
tion, mainly related to the field of computer science.
Nevertheless, the problems raised by artificial intelli-
gence are manifested in related scientific fields, for
example, in the theory of control systems, neurosci-
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ences, applied mathematics, linguistics, philosophy
and psychology.

Approaches to the formation and construction of
scientific research in artificial intelligence, as well as in
other scientific fields, can be divided into abstract-
symbolic and computational-pragmatic directions, as
shown in Fig. 1. The abstract-symbolic direction in
artificial intelligence goes back to the set-theoretical
and logical foundations of the most abstract and at the
same time the most practical of all fundamental sci-
ences, i.e., mathematics.

On the basis of predicate logics of the first order,
theoretical logic systems are successfully created, used
in artificial intelligence for automatic theorem prov-
ing, for example, a formal logic system of automatic
inference based on the deductive theory of residues
modulo [14]. Applied software implementations of
systems for automatic theorem proving by means of
first-order logic [15] and libraries of test problems for
automatic theorem proving using clause normal forms
[16] are also being developed quite intensively. There
are also modern implementations in the logic lan-
guage SWI-Prolog, designed for the automatic gener-
ation of expert text processing systems based on
deductive inference on clause graphs [17].

The other side of symbolic intelligence and the rep-
resentation of knowledge in artificial-intelligence sys-
tems is associated with an obvious fact: an exclusive
part of real information that is input to artificial-intel-
ligence systems is ill-conditioned and systematized,
having a possibility and probabilistic nature. One of
the methods for describing this feature of symbolic
intelligence is fuzzy logic. Techniques and approaches
that are used in fuzzy logic have now gone far beyond
the consideration of logic as such. The half-century
development of fuzzy logic in work [18] is given by its
founder L. Zadeh and in work [19], by D. Dubois and
A. Prade, well-known scientists in this field. The
spread of ideas and methods of fuzzy logic in the field
of artificial intelligence turned out to be so wide that at
present it can be considered one of the “symbols” of
not only symbolic, but also computational artificial
intelligence. Fuzzy logic, constructed on the basis of
the mathematical apparatus of fuzzy sets, has been
many times subjected to improvements and extensions
that are of particular importance for artificial-intelli-
gence systems, for example, for a complex-valued rep-
resentation of data [20] in the direction of plausible
inference on intuitionistic fuzzy sets [21], fuzzy ana-
lytical [22] and fuzzy cognitive [23] approaches to
decision making.

The main attention in modern approaches to the
representation of knowledge in artificial-intelligence
systems is paid not so much to the very principles of
organizing and formalizing knowledge bases as a set of
agreements of an ontological nature, that is, ensuring
structuredness, coherence, and then the process of
interpretability, transfer of knowledge into a machine
JOURNAL OF SURFACE INVESTIGATION: X-RAY, SYNCHRO
format. For this, numerous families of description log-
ics [24] are widely used, including description ontolo-
gies [25] and languages   for representing ontologies
such as OWL (Web Ontology Language).

The processes and methods of comparing the arti-
ficial knowledge of reality seem to be much more
complex, and in such a way that, on the one hand,
reproduced artificial knowledge does not break away
from reality, is not based on conjectures and has prop-
erties that are confirmed in the external world. On the
other hand, it is necessary that plausible reasoning in
artificial-intelligence systems be pragmatically suit-
able and effective for their formal execution in com-
puting systems that in some cases, for example, in
autonomous mobile platforms, have limited comput-
ing resources. For this, different approaches to plausi-
ble reasoning of the theory of artificial intelligence use
different ways of describing and formally determining
the measure of information uncertainty, confidence
and conviction in knowledge, together with the degree
of plausibility of the reasoning process itself. Difficult-
to-formalize concepts of uncertainty and disconfi-
dence as the initial prerequisites for the research pro-
cess gave rise to a significant number of mathematical
directions and approaches, the apparatus of which was
subsequently used in the theory of artificial intelli-
gence. These include classical and Bayesian probabi-
listic approaches, evidence theory, theory of possibili-
ties, interval non-classical probabilities, probabilistic
logic, situational and event calculus, the theory of
reconsiderable reasoning, argumentation theory,
Kripke models, multi-agent and granular computa-
tion, as well as broad classes of plausible inference sys-
tems based on induction and abduction. Under condi-
tions of the entry of large amounts of information into
artificial-intelligence systems, the modern develop-
ment of methods of argumentation theory, such as the
automatic extraction and structuring of arguments
[26] and artificial computational argumentation [27],
becomes important.

The directions of abstract-symbolic intelligence,
discussed above, refer to the so-called “top-down”
approaches in the theory of artificial intelligence. No
less well-known are the “bottom-up” approaches,
which originate from the tasks of studying and model-
ing the neurobiological principles of the functioning
of natural organisms and the human brain. Particu-
larly well-known and extremely widespread today is
the apparatus of artificial neural networks, which is
constantly supplemented not only with new technical
capabilities, but also constantly undergoing revision
and approaching the imitation of human cognitive and
thinking abilities.

At present, it is more important that the very math-
ematical apparatus of artificial neural networks, with-
out pretending to be extremely accurate in reproduc-
ing neurobiological processes occurring in natural
organisms, supplemented by the colossal computing
TRON AND NEUTRON TECHNIQUES  Vol. 15  No. 3  2021



ON THE TECHNOLOGIES OF ARTIFICIAL INTELLIGENCE 487

Fig. 1. Modern trends in artificial intelligence. 
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capabilities of modern computers and infocommuni-
cation networks, can be used everywhere in a wide
range of applied areas, where there are problems of
object classification and pattern recognition.

The great popularity of artificial neural networks is
facilitated by the principles of their functioning, fairly
simple (if considered at the initial level) and under-
standable to the vast majority, a huge number of scien-
tific and popular articles, books and manuals on the
creation, training and use of artificial neural networks,
as well as their many implementations in in the form of
software modules and libraries that even a non-spe-
cialist in the field of programming can use. Indeed,
the principle of functioning of an elementary artificial
neuron was initially very simple: a weighted sum of
input numerical values   transmitted from receptors or
artificial synaptic connections of the previous layer
activates a simple jump-like threshold function, which
either transfers or does not allow further propagation
of the output value from this element to the next one.
Naturally, one artificial neuron could not adequately
solve the problem of classifying a set of objects, in
addition, the requirement for the presence of many
JOURNAL OF SURFACE INVESTIGATION: X-RAY, SYNCHRO
inputs from various sensory devices, i.e., artificial
receptors, gave rise to the emergence of various
options for connecting artificial neurons into network
structures called topologies of artificial neural net-
works. Over time, various types of threshold functions
have become more complex, which are usually called
the activation functions of artificial neurons. Now an
artificial neural network is a massively parallel distrib-
uted information processing system, the supercom-
puter implementations of which can number tens of
millions of artificial neurons with a much larger num-
ber of artificial synaptic connections between them.
Obviously, before using such a network, or one with a
significantly smaller size, it is necessary to choose a
goal and present the desired end result to make efforts
aimed at minimizing incorrect classification options,
incorrect sampling, inappropriate choice of alterna-
tives formed by the output of an artificial neural net-
work. In a simplified sense, training an artificial neu-
ral network is a procedure for changing the weights
and biases of a network, performed in accordance with
some learning algorithm, and designed to “teach” the
network to give a specific answer to a specific set of
TRON AND NEUTRON TECHNIQUES  Vol. 15  No. 3  2021
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Fig. 2. Position of machine learning in artificial intelli-
gence. 
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input data. Learning algorithms are very important,
both in terms of accuracy of the output classification,
together with the adequacy of their inputs, and in
terms of computational complexity, which character-
izes the time spent on the process of preliminary net-
work training.

The choice of the general architecture and algo-
rithms for training artificial neural networks remains a
rather nontrivial task to this day and requires at least
initial knowledge from the researcher in many areas
related to artificial intelligence, especially mathemati-
cal skills. It is not always possible to successfully solve
the main problems of classification, clustering, pattern
recognition based on relatively simple architectures
and learning algorithms for artificial neural networks.
In such cases, they resort to the use of complex multi-
level architectures of artificial neural networks, due to
which it becomes possible to represent the input data
for the task at various levels of abstraction using vari-
ous nonlinear computational nodes, i.e., neurons.
This distinction is emphasized in the name of a group
of machine-learning methods called “deep learning”
and often by the presence of a super-precise structure
of artificial neural networks. This area of   machine
learning uses a multi-level representation of the func-
tion to be trained and often has many parameters, and
the learning process itself is performed on big data to
improve the accuracy of object classification or to pre-
dict processes. A natural consequence of this compli-
cation is a significant increase in both technical
resources and the time spent on training such a multi-
level and heterogeneous artificial-neural-network
architecture at each of the levels. With the advent of
JOURNAL OF SURFACE INVESTIGATION: X-RAY, SYNCHRO
corresponding computer hardware and effective com-
puting tools, deep-learning technologies for artificial
neural networks are now at the stage of growth and sig-
nificant interest in many applied areas of using artifi-
cial-intelligence systems.

In addition, in the modern world, machine-learn-
ing methods, and especially deep learning, are actively
used to solve a wide range of problems, both applied
and scientific. Machine learning is one of the areas of
artificial intelligence (Fig. 2), which received a power-
ful impetus to development due to the increased com-
puting power of modern computer technology and the
availability of a large amount of data.

The problem that machine-learning methods solve
is finding an unknown relationship in the data, which
is called a training sample. Learning is the process of
finding an algorithm that would approximate the
unknown dependence in an optimal way. There are
three main types of machine-learning methods:

(1) Supervised learning. For this type of methods,
the training sample is represented by object-response
pairs. The main problems of supervised learning
methods are:

(a) classification—the case when the set of answers
is finite;

(b) regression—the case when the set of answers is
infinite (real numbers).

(2) Unsupervised learning. In this case, the train-
ing sample is only a set of objects. Typical problems of
unsupervised learning include:

(a) clustering—dividing the sample into several
non-intersecting sets;

(b) dimensionality reduction—representation of a
training sample in a space of a lower dimension;

(c) data visualization—displaying data in the form
of graphs on a plane and others.

(3) Reinforcement learning. A machine-learning
method called an agent learns through interaction
with its environment. During training, the agent learns
to act in such a way as to maximize the potential gain.

Supervised learning algorithms include:
(1) Bayesian classifier [28] is based on the applica-

tion of Bayes theorem. After finding the posterior
probabilities of the classes for the object under consid-
eration, described by a set of features, the algorithm
selects the most probable class as an answer. Used pri-
marily for classification problems.

(2) Support vector machine [29, 30] constructs an
optimal dividing hyperplane in the parameter space of
the training sample. It is a good method for solving
classification problems, but also used for regression
problems.

(3) Decision tree [31] is a tree structure intended
for decision making. Decision trees consist of decision
rules according to which branching occurs, and first of
all, features with the minimum entropy are selected.
TRON AND NEUTRON TECHNIQUES  Vol. 15  No. 3  2021
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The method can be used for both classification and
regression.

(4) The k-nearest neighbors method [32] is a sim-
ple metric classification algorithm. The object is
assigned a class, the objects of which are the most
among the k nearest neighbors. The method can also
be used for regression problems, in this case, the aver-
age value of k nearest neighbors is assigned to the
object.

An example of unsupervised learning algorithms
are:

(1) Algorithm of k means [33] is an iterative cluster-
ing algorithm that assigns an object to the cluster, the
center of which is closer. Cluster centers are recalcu-
lated at the end of each iteration.

(2) Principal component analysis (PCA) [34, 35] is
one of the main methods for solving the problem of
dimensionality reduction, which constructs new com-
ponents losing the least amount of information. Prin-
cipal components can be found by the singular value
decomposition (SVD) of feature objects.

MACHINE-LEARNING TECHNOLOGIES
FOR SEARCHING FOR NEW MATERIALS

AND STRUCTURES
Traditional trial and error methods tend to impede

large-scale searches for new functional materials.
Multiscale computer-modeling approaches,
enhanced by machine-learning methods, take the pro-
cess of finding new functional materials to a funda-
mentally new level.

For example, Schleder et al. used machine-learn-
ing technologies to define thermodynamically stable
two-dimensional materials [36]. For this, the materi-
als were classified according to the energies of forma-
tion. Based on data on the composition and symmetry
(without using information on atomic positions), the
materials were assigned to the class with low, medium,
or high stability. The proposed approach made it pos-
sible to identify the most promising new two-dimen-
sional materials for a more thorough analysis. More
than a thousand new structures were generated to test
the applicability of the model. For some of them, the
classification was confirmed by calculations in the
density functional theory (DFT) approximation. As a
result, a new material was proposed that has a poten-
tially high efficiency for the photoelectrocatalytic
decomposition of water: Sn2SeTe.

In [37], a method was proposed that combines
high-performance ab initio calculations and machine-
learning approaches to predict the structures of two-
dimensional octahedral oxyhalides with improved
optoelectronic properties. For this, a model was devel-
oped based on an extensive dataset that included 300
structures of two-dimensional octahedral oxyhalides,
generated based on calculations in the DFT approxi-
mation. The model allowed acceleration of the valida-
JOURNAL OF SURFACE INVESTIGATION: X-RAY, SYNCHRO
tion of 5000 potential optoelectronic materials based
on octahedral oxyhalides. The distortion factors of
folded octahedra played a key role in predicting the
optoelectronic properties in this model. Based on the
developed model, it was shown that Bi2Se2Br2,
Bi2Se2BrI, and Bi2Se2I2 have optimal optoelectronic
properties: a moderate band gap, high mobility of
charge carriers, and superhigh absorption coefficients.

The authors of [38] used a combination of machine
learning and the high-performance screening of two-
dimensional materials for photovoltaics [8]. As a
result, twenty-six most promising candidates were
selected from 187093 inorganic crystal structures. In
addition to predicting materials with the highest
energy-conversion efficiency, the model made it pos-
sible to establish a fundamental pattern of structure
and properties: the packing factor affects the likeli-
hood of having suitable physical properties. The
results showed that Sb2Se2Te, Sb2Te and Bi2Se3 have a
high energy conversion efficiency and are candidates
for use in photovoltaics.

In [39], Frey et al. used the Positive and Unlabeled
learning method to determine the likelihood of syn-
thesizing theoretically proposed two-dimensional
materials based on transition metal carbides, carboni-
trides, and nitrides. On the basis of the model, 18
materials with the highest probability of the possibility
of synthesis were identified, while the highest proba-
bility was shown by a two-dimensional material based
on zirconium: Zr2GaC.

In [40], Momeni et al. in their review considered
various combinations of theoretical calculations of
two-dimensional materials and machine-learning
methods. In particular, the features of predicting the
thermodynamics and kinetics of the synthesis of two-
dimensional materials were shown. The authors sug-
gest that there will be two main approaches for the
design and synthesis of new two-dimensional materi-
als. One approach assumes that before the synthesis of
materials, computer simulation will be carried out,
taking into account the physicochemical conditions of
synthesis. The second approach will involve a closed
loop in which the synthesis conditions will be adjusted
in real time.

Fujikake et al. in [41] used interatomic potentials to
model guest lithium atoms in graphene, graphite, and
amorphous carbon nanostructures. To train the neural
network, the data from the DFT calculations were
used. Instead of considering the complete Li–C sys-
tem, the energy and force differences resulting from
the intercalation of lithium atoms were considered. It
was shown that consideration of the pair potential
made it possible to detect the interaction between lith-
ium atoms, which improved the model of the Gauss-
ian potential. Thus, the possibility of using pair poten-
tials obtained on the basis of machine-learning algo-
rithms was shown.
TRON AND NEUTRON TECHNIQUES  Vol. 15  No. 3  2021
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Table 1. Functional 2D materials predicted by artificial-intelligence technologies

Material Application Source

Sn2SeTe Water splitting photocatalyst  [36]
Bi2Se2Br2, Bi2Se2BrI and Bi2Se2I2 Photovoltaics  [37]
Sb2Se2Te, Sb2Te and Bi2Se3 Photovoltaics  [38]
Zr2GaC –  [39]
The atomic structure of boron-doped graphene
was investigated in [42]. To analyze the data set, the
authors used a machine-learning method such as
Monte Carlo tree search with Bayesian unfolding to
find the most stable structure of B graphene with a
boron concentration of up to 31.25%. It was found that
in free-standing, pure graphene, doped boron atoms
replace carbon atoms at various sublattice sites, with
the B–B configuration dominating in cases of a high
boron concentration. Doping with boron can increase
the work function of graphene by 0.7 eV at a boron
content above 3.1%.

Table 1 shows functional two-dimensional materi-
als predicted on the basis of artificial-intelligence
technologies.

ARTIFICIAL-INTELLIGENCE 
TECHNOLOGIES FOR PREDICTING 

THE PHYSICAL PROPERTIES 
AND STRUCTURAL CHARACTERISTICS

OF 2D MATERIALS

In recent years, artificial-intelligence tools have
been proposed to improve the efficiency of diagnostic
methods for 2D materials. In addition, the use of arti-
ficial-intelligence algorithms allows prediction of the
structural characteristics, electronic and thermal
properties of various two-dimensional structures.

To investigate 2D materials, machine-learning
algorithms integrated with other approaches can be
used to quantify the thickness of the graphene layer
and the amount of impurities in it. For example,
Leong et al. presented a fast and non-destructive
approach to using artificial intelligence to assess the
quality (i.e., packing order and number of layers) of
centimeter-sized graphene samples by analyzing
Raman spectroscopy data [43]. To use the artificial-
intelligence tool to analyze Raman data, end users
only need to download the Raman spectra collected
from the graphene samples under study as input, and
analysis of the Raman data will be performed auto-
matically. When using this technique, three parame-
ters ωG, ω2D, and Г2D (ωG and ω2D are the positions of
the G and 2D bands, respectively, Г2D is the half-width
at half-height of the 2D peak) were extracted from
each Raman spectrum, then they were chosen as func-
tions clustering in the k-means algorithm. For exam-
ple, using this method, two clusters were identified,
JOURNAL OF SURFACE INVESTIGATION: X-RAY, SYNCHRO
which were a single layer and a two-layer graphene. In
addition, it was shown that, although only three
parameters are considered, the proposed analysis
makes it possible to recognize graphene with a thick-
ness of one to five layers and approximately estimate
their twist angles. It is reported that this algorithm is
fully automated, does not require human intervention,
is highly reliable (accuracy 99.95%) and can be
extended to other 2D materials for which Raman anal-
ysis is a convenient method for studying the number of
layers in layered compounds such as GeS, SnS, MoS2
and others. In addition, the developed method of
quality control using artificial intelligence is not lim-
ited to analysis of the Raman spectrum and can be
applied to the analysis results using other methods for
determining the characteristics of 2D materials, such
as scanning electron microscopy, scanning probe
microscopy, etc.

Other characteristics of graphene have also been
investigated using artificial intelligence algorithms.
For example, Garg et al. [44] proposed a new compu-
tational approach to assess the mechanical properties
of graphene samples. In this method, factors influenc-
ing the shear modulus of graphene structures are ana-
lyzed using molecular dynamics (MD) modeling. The
resulting data is then processed using gene expression
programming. Moreover, this approach makes it pos-
sible to formulate an explicit dependence of the shear
modulus of a graphene nanostructure on the aspect
ratio of graphene sheets, the temperature, the number
of atomic planes, and the number of defects. It was
found that the shear modulus predicted using the pro-
posed model is in good agreement with the experi-
mental results obtained from publications (the R2

value is about 0.94). In addition, in order to find out
the specific influence of each of the input parameters
of the system on the shear modulus of graphene struc-
tures, the sensitivity of the method to the input values
  was estimated. The results showed that it is the number
of defects that has the greatest influence on the shear
modulus for each graphene sheet, and then, in
decreasing order of influence, are the temperature, the
number of layers, and the aspect ratio.

The paper [45] demonstrated the use of machine
learning to predict the differences between the elec-
tronic properties of graphene nanostructures at two
levels of approximation: the Density Functional
method and the Self-consistent Charge Density
TRON AND NEUTRON TECHNIQUES  Vol. 15  No. 3  2021
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Functional Tight Binding method. In doing so, model
optimization and feature selection were performed for
70% of the dataset, while the remaining 30% were
used to test the predictive ability of the models. As a
result, the prediction accuracy of the proposed
machine-learning model was determined, which was
94 and 88% for the Fermi level energy and for the band
gap, respectively. In another study by the aforemen-
tioned research group [46], machine learning was used
to predict the band-gap energy of graphene nanoflakes
using the Topological Autocorrelation Vectors
method. The data sample consisted of the band-gap
energies of 662 optimized graphene nanoparticles.
Machine-learning modeling has shown that the most
suitable relationships appear at topological distances
in the range from 1 to 42 with a prediction accuracy of
more than 80%. The proposed model can statistically
significantly distinguish graphene nanoflakes with dif-
ferent energy gaps based on their molecular topology.

Dopant atoms play a key role in shaping the elec-
tronic properties of many materials. However, the
number of possible combinations of types and concen-
trations of doping atoms leads to a significant number
of possible atomic configurations. Dong et al. used
deep machine-learning approaches to predict the
band gap of graphene doped with boron and nitrogen
atoms [47]. To train the neural network, data sets
obtained on the basis of ab initio calculations were
used. The resulting model successfully predicts a band
gap with an accuracy of better than 90% with a root-
mean-square deviation of about 0.1 eV.

In addition, the electronic properties of not only
graphene nanostructures, but also two-dimensional
transition-metal carbides and nitrides (Mxenes) were
investigated using machine-learning models. For
example, Rajan and colleagues have built statistical
learning models to accurately predict the band gap of
this vast class of materials [48]. The models were
developed using nuclear ridge regression, support vec-
tor regression, Gaussian process, and bagging using
the properties of Mxenes such as boiling and melting
points, group numbers, atomic radii, phases, bond
lengths, etc. as input functions. It was noted that
among them, the Gaussian process model predicts the
band gap with the smallest root-mean-square error of
0.14 eV within a few seconds. At the same time, the
authors of the paper developed a metal-semiconduc-
tor classification model with an accuracy of 94%.

Patra et al. in [49] used supervised machine learn-
ing, MD simulation, and high-resolution transmis-
sion electron microscopy to fully understand the
phase transformation in 2D transition metal dichalco-
genides. Genetic algorithms were combined with MD
to study the extended structure of point defects, their
dynamic evolution, and their role in inducing a phase
transition between the semiconductor (2H) and
metallic (1T) phases in a MoS2 single layer. The
genetic algorithm is used to efficiently search for the
JOURNAL OF SURFACE INVESTIGATION: X-RAY, SYNCHRO
most energetically favorable distribution of atomic
defects, which, as was found, is the organization of the
predominant type of defects (sulfur point vacancies)
into extended lines in the MoS2 layer. Using high-res-
olution transmission electron microscopy, the results
were confirmed and a phase transformation from the
2H- to the 1T phase, which is localized near these lin-
ear defects when exposed to high doses of an electron
beam, was assumed. The MD simulation, in turn,
explains the molecular mechanism of this defect-
induced phase transformation. It consists in the fact
that sulfur atoms locally slide to defects and lead to the
formation of an intermediate α phase, which triggers
the formation of the 1T phase. It is noted that the final
amount of the 1T phase can be retained by increasing
the concentration of defects and temperature.

Yang et al. used machine learning to determine the
interfacial thermal resistance in thermally conductive
materials based on graphene and hexagonal boron
nitrite based on data on the system temperature, adhe-
sion forces, and in-plane strain expansion [50]. The
training dataset was obtained using calculations in the
MD approximation. The best results were shown by
methods based on a two-layer neural network.

Han et al. in [51] used an algorithm based on a neu-
ral network architecture (encoder-decoder) to identify
and determine the thickness of 2D samples by real-
time pixel-by-pixel recognition of optical microscopy
images of various 2D materials using semantic seg-
mentation. It has been shown that the trained network
can extract graphical features such as contrast, color,
edges, shapes, scale sizes and distributions, from
which an approach is developed to predict the most
important physical properties of 2D materials. In addi-
tion, the algorithm was found to find correlations
between optical microscopy images and the physical
properties of 2D materials. For example, it was pre-
dicted that 1T'ould be similar to 1T–HfSe2 in the
trained group, which corresponds to the similar crystal
structure of these materials. Thus, the proposed
approach can be used to predict the properties of new,
not yet investigated 2D materials.

Machine learning has been successfully applied to
the optical identification of 2D nanostructures such as
graphene, MoS2, and heterostructures of these two
materials [52]. In the course of this study, an approach
was developed based on the trained and automatic
analysis of the red, green, and blue information of
optical photographs of 2D nanostructures using the
support vector machine. It turned out that when iden-
tifying 2D heterostructures, the regions of the sub-
strate, graphene, MoS2, heterojunction, as well as the
resist residues from the transfer process, can be auto-
matically recognized with an accuracy of 90.16%. The
experimental results show that the developed
approach allows one to accurately characterize
graphene, molybdenum disulfide, and their hetero-
TRON AND NEUTRON TECHNIQUES  Vol. 15  No. 3  2021
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Table 2. Properties and characteristics of two-dimensional materials predicted by artificial-intelligence technologies

Material Properties and characteristics Artificial-intelligence tools Source

Graphene Number of layers k-means algorithm  [43, 53]

Graphene Shear modulus Gene expression programming method  [44]

Graphene Fermi energy and band gap Multiple linear regression, decision tree, ran-
dom forest, support vector machine  [45]

Mxenes Band gap
Nuclear ridge regression, support vector 
machines, Gaussian process regression and bag-
ging

 [48]

MoS2 Distribution of point defects Genetic algorithm  [49]

Graphene, MoS2
Thickness of samples, presence of 
impurities in them Support vector machine  [52]

Van der Waals het-
erostructures Interlayer distance and band gap Feed-forward neural network, support vector 

machine, relevant vector machine, random forest  [55]
structures in terms of sample thickness, the presence
of impurities in them, and even the packing order.

For the analysis of optical images of 2D materials,
it was proposed in [53] to develop an approach for the
fast identification of 2D materials, the essence of
which is a combination of a reflection model based on
Fresnel law and machine learning. In this study, such
three effective indices as optical contrast (OC), total
color difference, and red-green-blue index analysis
were used to determine the optimal Si/SiO2 substrates
and the number of layers of 2D materials deposited
onto the substrate using optical microscopy. In doing
so, firstly, the OC and the total color difference were
used to determine the suitable substrates that maxi-
mize the difference not only between the 2D material
and the substrate, but also between the 2D material of
different layers. In this case, the algorithms of
k-means and k-nearest neighbors are used to obtain a
database of the thickness of 2D materials (graphene
and MoS2 on a Si/SiO2 substrate) and to test their
optical images using the “red–green–blue” index.

Wang et al. in [54] independently developed such
machine-learning approaches as Materials Genome
Integration System Phase and Property Analysis
(MIPHA) and rMIPHA (based on the R program-
ming language) for predicting the 2D properties of 2D
materials. When using them, the two-dimensional and
three-dimensional microstructural analysis of steels,
direct analysis of property predictions and reverse
analysis of the dependence of properties on micro-
structure were carried out. At the same time, quantita-
tively determined data on the microstructure and
properties constitute the “genomes of materials” used
for subsequent forward and reverse analyses, on the
basis of which stress-strain curves were then predicted.

As noted earlier, recently, new classes of substances —
van der Waals heterostructures – have been actively
JOURNAL OF SURFACE INVESTIGATION: X-RAY, SYNCHRO
studied. In principle, the number of different struc-
tures that can be synthesized is not limited. Therefore,
even the theoretical modeling of possible structures in
the DFT approximation is very time consuming. The
combination of computer modeling and machine-
learning methods is a more efficient alternative to both
DFT calculations and chemical synthesis. Parameters
such as the interlayer spacing and band gap for hybrid
van der Waals heterostructures were predicted based
on machine-learning methods [55].

Table 2 shows the properties and characteristics of
two-dimensional materials predicted on the basis of
artificial-intelligence technologies.

CONCLUSIONS

A review of current published data on the use of
artificial-intelligence technologies and especially
machine learning shows that this new end-to-end
technology is already being actively used to solve a
wide range of problems, including in the field of two-
dimensional materials science at all stages of research
(computer design, chemical synthesis and subsequent
diagnostics of the characteristics of the obtained
nanomaterials). This makes it possible to give a signif-
icant new impetus to a new stage in the development
of studies of surfaces and two-dimensional nanostruc-
tures both in the search for parameters for the synthe-
sis of new 2D materials and in predicting their physi-
cochemical characteristics, promising in terms of
practical application.

FUNDING

The study was carried out with financial support of the
Ministry of Science and Higher Education of the Russian
TRON AND NEUTRON TECHNIQUES  Vol. 15  No. 3  2021



ON THE TECHNOLOGIES OF ARTIFICIAL INTELLIGENCE 493
Federation within the framework of the state assignment in
the field of scientific activity no. 0852-2020-0019.

REFERENCES
1. A. K. Geim and K. S. Novoselov, Nat. Mater. 6, 183

(2007). 
https://doi.org/10.1038/nmat1849

2. C. Cheng, S. Li, A. Thomas, et al., Chem. Rev. 117,
1826 (2017). 
https://doi.org/10.1021/acs.chemrev.6b00520

3. A. C. Ferrari, F. Bonaccorso, V. Fal’ko, et al., Na-
noscale 7, 4598 (2015). 
https://doi.org/10.1039/C4NR01600A

4. C. Tan, X. Cao, X.-J. Wu, et al., Chem. Rev. 117, 6225
(2017). 
https://doi.org/10.1021/acs.chemrev.6b00558

5. H. Jin, C. Guo, X. Liu, et al., Chem. Rev. 118, 6337
(2018). 
https://doi.org/10.1021/acs.chemrev.7b00689

6. Q. Mu, W. Zhu, X. Li, et al., Appl. Catal., B 262,
118144 (2020). 
https://doi.org/10.1016/j.apcatb.2019.118144

7. C. Mackin, A. Fasoli, M. Xue, et al., 2D Mater. 7,
022002 (2020). 
https://doi.org/10.1088/2053-1583/ab6e88

8. M. R. Panda, KA. Raj, A. Ghosh, et al., Nano Energy
64, 103951 (2019). 
https://doi.org/10.1016/j.nanoen.2019.103951

9. X. Sun, X. Zhang, and Y. Xie, Matter 2, 842 (2020). 
https://doi.org/10.1016/j.matt.2020.02.006

10. K. S. Novoselov, A. Mishchenko, A. Carvalho, and
A. H. Castro Neto, Science 353, aac9439 (2016). 
https://doi.org/10.1126/science.aac9439

11. G. H. Silvestre, W. L. Scopel, and R. H. Miwa, Na-
noscale 11, 17894 (2019). 
https://doi.org/10.1039/c9nr05279h

12. B. Anasori, M. R. Lukatskaya, and Y. Gogotsi, Nat.
Rev. Mater. 2, 16098 (2017). 
https://doi.org/10.1038/natrevmats.2016.98

13. M. Ge and W.-K. Lee, J. Synchrotron Radiat. 27, 567
(2020). 
https://doi.org/10.1107/s1600577520001071

14. G. Burel, G. Bury, R. Cauderlier, et al., J. Autom. Rea-
soning 64, 1001 (2019). 
https://doi.org/10.1007/s10817-019-09533-z

15. T. Tammet, in Proceedings of the 27th International
Conference on Automated Deduction (Springer, Natal,
2019), p. 538. 
https://doi.org/10.1007/978-3-030-29436-6_32

16. G. Sutcliffe, J. Autom. Reasoning 59, 483 (2017). 
https://doi.org/10.1007/s10817-017-9407-7

17. E. C. Garrido Merchán, C. Puente, and J. A. Olivas, in
Proceedings of the 14th International Conference HAIS
2019 (Springer, León, 2019), p. 14. 
https://doi.org/10.1007/978-3-030-29859-3_2

18. L. A. Zadeh, Fuzzy Sets Syst. 281, 4 (2015). 
https://doi.org/10.1016/j.fss.2015.05.009

19. D. Dubois and H. Prade, Fuzzy Sets Syst. 281, 21
(2015). 
https://doi.org/10.1016/j.fss.2015.09.004
JOURNAL OF SURFACE INVESTIGATION: X-RAY, SYNCHRO
20. O. Yazdanbakhsh and S. Dick, Fuzzy Sets Syst. 338, 1
(2018). 
https://doi.org/10.1016/j.fss.2017.01.010

21. X. Wang, Z. Xu, and X. Gou, Fuzzy Optim. Decis.
Making 19, 251 (2020). 
https://doi.org/10.1007/s10700-020-09319-8

22. H. Liao, X. Mi, Z. Xu, et al., IEEE Trans. Fuzzy Syst.
26, 2578 (2018). 
https://doi.org/10.1109/tfuzz.2017.2788881

23. L. Jiang and H. Liao, Appl. Soft Comput. 93, 106374
(2020). 
https://doi.org/10.1016/j.asoc.2020.106374

24. M. Butakova, A. Chernov, A. Guda, et al., Adv. Intell.
Syst. Comput., 875, 225 (2019). 
https://doi.org/10.1007/978-3-030-01821-4_24

25. B. Konev, C. Lutz, A. Ozaki, and F. Wolter, J. Mach.
Learn. Res. 18, 1 (2018).

26. M. Lippi and P. Torroni, ACM Trans. Internet Tech-
nol. 16, 10 (2016). 
https://doi.org/10.1145/2850417

27. A. Katie, B. Pietro, G. Massimiliano, et al., AI Mag.
38, 25 (2017). 
https://doi.org/10.1609/aimag.v38i3.2704

28. P. Langley, W. Iba, and K. Thompson, in Proceedings of
the 10th National Conference on Artificial Intelligence
(AAAI’92) (AAAI, San Jose, CA, 1992), p. 223.

29. C. Cortes and V. Vapnik, Mach. Learn. 20, 273 (1995). 
https://doi.org/10.1007/bf00994018

30. H. Drucker, C. J. C. Burges, L. Kaufman, et al., in Pro-
ceedings of the 9th International Conference on Neural
Information Processing Systems, NIPS’96 (MIT, Den-
ver, CO, 1996), p. 155.

31. J. R. Quinlan, Mach. Learn. 1, 81 (1986). 
https://doi.org/10.1007/bf00116251

32. E. A. Patrick and F. P. Fischer, Inf. Control 16, 128
(1970). 
https://doi.org/10.1016/s0019-9958(70)90081-1

33. W. A. Barbakh, Y. Wu, and C. Fyfe, Non-Standard Pa-
rameter Adaptation for Exploratory Data Analysis
(Springer, Berlin, 2009). 
https://doi.org/10.1007/978-3-642-04005-4_2

34. K. Pearson, London, Edinburgh, Dublin Philos. Mag.
J. Sci. 2, 559 (2010). 
https://doi.org/10.1080/14786440109462720

35. M. Ringner, Nat. Biotechnol. 26, 303 (2008). 
https://doi.org/10.1038/nbt0308-303

36. G. R. Schleder, C. M. Acosta, and A. Fazzio, ACS Ap-
pl. Mater. Interfaces 12, 20149 (2020). 
https://doi.org/10.1021/acsami.9b14530

37. X. Y. Ma, J. P. Lewis, Q. B. Yan, and G. Su, J. Phys.
Chem. Lett. 10, 6734 (2019). 
https://doi.org/10.1021/acs.jpclett.9b02420

38. H. Jin, H. Zhang, J. Li, et al., J. Phys. Chem. Lett. 11,
3075 (2020). 
https://doi.org/10.1021/acs.jpclett.0c00721

39. N. C. Frey, J. Wang, G. I. V. Bellido, et al., ACS Nano
13, 3031 (2019). 
https://doi.org/10.1021/acsnano.8b08014

40. K. Momeni, Y. Ji, Y. Wang, et al., NPJ Comput. Mater.
6, 22 (2020). 
https://doi.org/10.1038/s41524-020-0280-2
TRON AND NEUTRON TECHNIQUES  Vol. 15  No. 3  2021



494 KIRSANOVA et al.
41. S. Fujikake, V. L. Deringer, T. H. Lee, et al., J. Chem.
Phys. 148, 241714 (2018). 
https://doi.org/10.1063/1.5016317

42. T. M. Dieb, Z. Hou, and K. Tsuda, J. Chem. Phys. 148,
241716 (2018). 
https://doi.org/10.1063/1.5018065

43. W. S. Leong, G. Arrabito, and G. Prestopino, Crystals
10, 308 (2020). 
https://doi.org/10.3390/cryst10040308

44. A. Garg, V. Vijayaraghavan, C. H. Wong, et al., Mol.
Simul. 41, 1143 (2014). 
https://doi.org/10.1080/08927022.2014.951351

45. M. Fernandez, A. Bilić, and A. S. Barnard, Nanotec-
nology 28, LT03 (2017). 
https://doi.org/10.1088/1361-6528/aa82e5

46. M. Fernandez, J. I. Abreu, H. Shi, and A. S. Barnard,
ACS Comb Sci. 18, 661 (2016). 
https://doi.org/10.1021/acscombsci.6b00094

47. Y. Dong, C. Wu, C. Zhang, et al., NPJ Comput. Mater.
5, 26 (2019). 
https://doi.org/10.1038/s41524-019-0165-4

48. A. C. Rajan, A. Mishra, S. Satsangi, et al., Chem. Ma-
ter. 30, 4031 (2018). 
https://doi.org/10.1021/acs.chemmater.8b00686

49. T. K. Patra, F. Zhang, D. S. Schulman, et al., ACS
Nano 12, 8006 (2018). 
https://doi.org/10.1021/acsnano.8b02844

50. H. Yang, Z. Zhang, J. Zhang, and X. C. Zeng, Na-
noscale 10, 19092 (2018). 
https://doi.org/10.1039/c8nr05703f

51. B. Han, Y. Lin, Y. Yang, et al., Adv. Mater. 32, 2000953
(2020). 
https://doi.org/10.1002/adma.202000953

52. X. Lin, Z. Si, W. Fu, et al., Nano Res. 11, 6316 (2018). 
https://doi.org/10.1007/s12274-018-2155-0

53. Y. Li, Y. Kong, J. Peng, et al., J. Materiomics 5, 413
(2019). 
https://doi.org/10.1016/j.jmat.2019.03.003

54. Z.-L. Wang and Y. Adachi, Mater. Sci. Eng., A 744, 661
(2019). 
https://doi.org/10.1016/j.msea.2018.12.049

55. S. A. Tawfik, O. Isayev, C. Stampfl, et al., Adv. Theor.
Simul. 2, 1800128 (2018). 
https://doi.org/10.1002/adts.201800128

Translated by S. Avodkova
JOURNAL OF SURFACE INVESTIGATION: X-RAY, SYNCHROTRON AND NEUTRON TECHNIQUES  Vol. 15  No. 3  2021


	INTRODUCTION
	INTRODUCTION TO ARTIFICIAL- INTELLIGENCE TECHNOLOGY AND METHODS OF MACHINE LEARNING
	MACHINE-LEARNING TECHNOLOGIES FOR SEARCHING FOR NEW MATERIALS AND STRUCTURES
	ARTIFICIAL-INTELLIGENCE TECHNOLOGIES FOR PREDICTING THE PHYSICAL PROPERTIES AND STRUCTURAL CHARACTERISTICS OF 2D MATERIALS
	CONCLUSIONS
	REFERENCES

		2021-06-11T17:35:05+0300
	Preflight Ticket Signature




