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A B S T R A C T   

We report a new one-step room-temperature electrochemical synthesis of γ-Fe2O3@MIL-88a magnetic composite. Anode from metallic iron was used as Fe-source. We 
did not use any toxic or hazardous solvents. A careful, comprehensive characterization of the obtained material was applied, including a synchrotron experiment. The 
γ-Fe2O3@MIL-88a composite comprised diamond-like MIL-88a crystals of 100–300 nm covered with γ-Fe2O3 nanoparticles. This component provided a magnetic 
response to the synthesized material. Moreover, γ-Fe2O3 nanoparticles boosted semiconductor MOF crystals. As a result, the γ-Fe2O3@MIL-88a composite demon-
strated superior photocatalytic performance toward methylene blue degradation. MIL-88a crystals acted as photo-Fenton catalysts activating H2O2 decomposition 
with the production of active •OH radicals. Easy magnetic separation and visible-light activated photocatalytic properties make γ-Fe2O3@MIL-88a composite a 
promising system for removing organic dyes from contaminated water according to the photo-Fenton process.   

1. Introduction 

Metal-organic frameworks are porous materials with great structural 
diversity [1–3]. They comprise individual metallic centers or clusters of 
metal ions coordinated with non-metals (oxygen, nitrogen, and so on) 
[4,5]. These elements are designated as secondary building units. 
Organic molecules – linkers – bond these elements together and form a 
crystalline structure. So, crystal structure determines the size and shape 
of pores, while SBUs and linkers contribute active centers and functional 
groups for pore surface decoration. Monodisperse tunable pores with 
various functionalities provide the success of MOFs in such fields as gas 
sorption and separation [6–10], drug delivery [11–14], water and air 
purification [15–18], sensing [19,20], electrodes and supercapacitors 
[21–23], etc. 

Among others, catalysis is one of the essential areas of MOF appli-
cation [24–26]. Highly porous MOFs are widely used as support for 
catalytic nanoparticles [27–32]. The other option is available catalytic 
centers which provide catalytic properties to the whole MOF scaffold 
[17,33]. One of such MOFs is MIL-88a. 

MIL-88a is constructed from Fe3+ ions and fumaric acid (Fig. 1). The 
crystal structure of MIL-88a has hexagonal symmetry with a P − 62c 
(190) space group. Linker – fumaric acid – is a non-linear molecule that 

can rotate around σ-bonds with iron [34–36]. It results in flexibility of 
the structure. During the activation process or as a result of the solvent 
exchange, open modification with accessible pores transforms into a 
closed one. It leads to changes in pore volume and size of apertures in the 
pores, lattice constants, and XRD patterns [37]. Fe3+ ions are octahe-
drally coordinated with six oxygen atoms. Four of them come from 
carboxylic groups of linkers, one oxygen is the bridge and common for 
all tree metallic ions in SBU, and one oxygen belongs to a water mole-
cule. The last one is temporal and can be substituted or removed during 
post-synthetic sample treatment. 

Synthesis of most Fe-based MOFs occurs in toxic solvents. For 
instance, DMF was used as a solvent for production MIL-53 [38], 
MIL-88b [39], MIL-125 [40], MIL-101 [41]. On the other hand, MIL-88a 
can be obtained in a water medium. Available Fe-sites and an energy gap 
of approximately 2.2 eV make MIL-88a a promising photocatalyst 
working under visible light irradiation [42]. Moreover, MIL-88a pro-
motes properties of another photocatalysts, such as g-C3N4 [42], BiO-
Br/SrFe12O19 [43], MoS2 [44] etc. Finally, the flexibility of the MIL-88a 
structure is favorable for mass transfer because it simplifies access to the 
Fe-sites [45]. Thus, MIL-88a and composites with this MOF were applied 
as Fenton catalysts for environmental remediation from such pollutants 
as phenol [46–48], bisphenol A [49,50], tetracycline hydrochloride 
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[51], tris-(2-chloroisopropyl) phosphate [52], salicylic acid [53], and 
azomethine dyes [50,54–58]. 

In general, synthesis conditions significantly affect the morphology 
of MIL-88a particles, which are varied from cubic to rod-like [36,59]. 
The most common and straightforward method for MIL-88a synthesis is 
hydrothermal, which results in rod-like crystals [52]. MW-heating 
and/or organic solvents lead to the formation of diamond or 
spindle-like nanoparticles [36,47]. The morphology of particles affects 
the catalytic properties of MIL-88a [47]. The body of MIL-88a crystal 
comprises (100) edges, which are terminated with (101) ends. The (100) 
surface possesses a low reaction energy barrier for generating •OH, as 
confirmed by the DFT method. Rod-like crystals have elongated (100) 
surfaces, while (101) facets dominate diamond-like particles. The more 
exposed (100) surface of rod-like MIL-88a enhances H2O2 absorption 
and promotes phenol degradation [47]. Wenxiu Huang et al. applied 
MIL-88a rod-like particles to phenol degradation [48]. The authors 
proposed coating MOF with perylene-3,4,9,10-tetracarboxylic diimide 
to reduce MIL-88a deactivation and increase the stability of the material 
in an acidic medium. The same group in a recent article reported g-C3N4 
introduction to MIL-88a via ball milling. The authors claimed that both 
g-C3N4 and MIL-88a absorb photons under visible light. It led to the 
redistribution of electrons on the valence and conductance bands of 
composite components. Сonsequently the efficient separation of the 
photo-generated electron-hole pairs increased the phenol degradation 
rate [46]. MIL-88a was also applied for dye degradation [54–58]. Gangli 
Ren et al. reported ZnO-boosted rod-like MIL-88a crystals for methylene 
blue decomposition [54]. The membranes with MIL-88a and graphene 
oxide were proposed for water treatment [55,57,58]. 

Although the rod-like shape of MIL-88a crystals is considered pref-
erable for Fenton-like catalysis, synthesizing small particles with such a 
shape is rather challenging. In most cases, the length of rod-like crystals 
is about a few μm [46,52–54]. However, nanoparticles offer a larger 
active surface for catalytic transformations. Huifen Fu et al. proposed 
room temperature synthesis of MIL-88a in the water-ethanol mixture to 
obtain spindle-like particles [50]. The authors compared MIL-88a with 
the particle size of 500 and 1000 nm. They claimed that smaller crystals 
exhibited better photo-Fenton catalytic performance toward rhodamine 
B and bisphenol A removal under visible light irradiation. 

Magnetic properties give an excellent advantage to the heteroge-
neous catalytic process. Many researchers used MIL-88a as a precursor 
for the production of magnetic nanoparticles in carbon support [60–64]. 
However, pyrolysis destroys the MIL-88a structure. An alternative way 
is a multistep synthesis of composites comprising magnetic nano-
particles and MIL-88a. Yi Liu et al. reported the synthesis of Fe3O4@-
MIL-88a composite [65]. First, they obtained rod-like MIL-88a particles 
via hydrothermal synthesis. Then they added them to the reaction 
mixture for Fe3O4 synthesis by coprecipitation technique. Fe3O4@-
MIL-88a composites were applied for Bromophenol Blue degradation. 
The simple magnetic separation allowed multiple recycling of the syn-
thesized catalyst. 

Additionally, to magnetic separation options, iron oxides can alter-
nate the photocatalytic properties of the composite material. Such iron 
oxides as hematite, maghemite, and magnetite demonstrate semi-
conductor photocatalytic performance as Fenton-catalysts [66]. γ-Fe2O3 
is an n-type semiconductor. Its bandgap of 2.2 eV allowed absorbing 
light with wavelengths up to 560 nm [67]. In addition, due to the narrow 
bandgap of Fe2O3, it can be utilized as a sensitizer of such photocatalysts 
as TiO2 [68], graphene oxide [69], biochar [70], SiO2 [71]. 

In this way, one-pot synthesis of magnetic composite with MIL-88a 
nanoparticles is an urgent task. Such composite is a promising hetero-
geneous catalyst, which could be magnetically separated for recycling. It 
was reported that nucleation rate dramatically affects the size and 
morphology of MIL-88a crystals [36,59]. Electrosynthesis provides some 
advantages over traditional solvothermal methods. For instance, MOFs 
are produced electrochemically in mild conditions and in short synthesis 
times. Additionally, the electrochemical process offers precise control of 
synthetic conditions, including the rate of Fe-ions supply [72]. Using 
metallic electrodes as a source of metallic ions instead of their salts is 
more environmentally friendly. Moreover, it allows direct deposition of 
MOFs on substrates with real-time control of the structure and thickness 
of the layer [73]. Several MOFs were successfully obtained via the 
electrochemical procedure (Table S1 in SI) [74]. Nicolo Campagnol et al. 
reported the electrochemical deposition of the Fe-MIL-100 thin layer for 
the first time in 2013 [75]. This MOF is constructed from Fe3+ ions and 
1,3,5-benzene tricarboxylic linkers (BTC). The authors used an iron 
plate as an anode and an iron substrate as a cathode in a high-pressure, 

Fig. 1. (a) Structural formula of MIL-88a linker – fumaric acid and representation of Fe3+ ions for other parts. Model of the structure of MIL-88a in open (b) and 
closed (d) modifications. (c) SBU of MIL-88a. Orange spheres represent Fe3+ ions, gray ones stand for carbon, red ones show oxygen, and light-gray ones desig-
nate hydrogen. 
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high-temperature electrochemical cell. The mixture of water and 
ethanol was applied as a solvent for the BTC linker without additives 
such as mineral acids or ionic liquids. Temperature and current density 
were optimized to obtain a fine layer of MIL-100 on Fe-substrate. The 
material was tested for methanol storage and separation. In the recent 
article, electrochemical synthesis of Fe-MIL-100 was proposed in mild 
conditions [76]. The authors used the ionic liquid additive (1-Dodecyl, 
3-Methyl Imidazolium Chloride) and two iron electrodes. After 90 min 
of electrosynthesis at 40 ◦C, voltage 30 V (current 0.9 A) MIL-100 brown 
precipitate was obtained. The synthesized material was applied for 
pH-responsive drug delivery. A combination of Fe3+ ions and tereph-
thalic acid (BDC) has been shown to generate at least three MOFs: 
MIL-53, MIL-88b, and MIL-101. It was reported that controlled elec-
trochemical oxidation of Fe2+ to Fe3+ in the presence of BDC induced 
MOF formation with the control of the phase and quality of the material 
[77]. The authors utilized a one-compartment cell for controlled 
oxidation of Fe2+ ions from FeCl2 in DMF. The additive of 2,6-Lutidine 
was used as a proton scavenger. In this study, the authors obtained 
Fe-MIL-101 and Fe-MIL-101-NH2 both in powder and as a layer on a 
carboxy-functionalized indium tin oxide substrate. However, there are 
no reports of electrochemical synthesis of MIL-88a and magnetic com-
posites with it to the best of our knowledge. 

We report here a new strategy for one-pot electrochemical produc-
tion of magnetic composite γ-Fe2O3@MIL-88a. The obtained material 
was comprehensively characterized and applied for dye degradation via 
the photo-Fenton process. 

2. Experimental section 

Fumaric acid (H4C4O4), potassium chloride (KCl), sodium chloride 
(NaCl), and ethanol (C2H5OH) were purchased from commercial sup-
pliers and used without further purification. Deionized (DI) water (18 
MΩ cm) was obtained from the Simplicity UV water purification system. 

2.1. Electrochemical synthesis of γ-Fe2O3@MIL-88a 

The electrochemical cell for obtaining γ-Fe2O3@MIL-88a consisted 
of two iron electrodes (Alfa Aesar) with 99.995% pure metal. 2.5 × 2.5 
cm Fe-plates were immersed in the electrolyte for 2 cm. So 0.5 cm of 
electrodes were dry and used for connection to galvanostat. 

The volume of the electrolyte was 150 ml. The volume ratio of 
electrolyte components was 50% H2O and 50% ethanol. The concen-
tration of the linker (fumaric acid) was 0.02 M. Potassium chloride 
(0.559 g) was added to the electrolyte solution to increase the conduc-
tivity. Electrolysis was carried out using a P-20x galvanostat (Electro-
chemical Instruments). The synthesis optimization was carried out by 
varying the current strength and the electrolysis time (Table S2, Fig. S1, 
Fig. S2 in SI). Based on XRD, FTIR, and TEM studies, the optimal syn-
thesis parameters were determined for obtaining nano-sized crystals 
with diamond-like morphology. They are the following: voltage: V = 15 
V, the current density I = 12 mA cm− 2, and the electrolysis time of 30 
min with stirring. After the end of the synthesis, the obtaining disper-
sions were centrifuged, washed with water, centrifuged again, and dried 
for 18 h. 

2.2. Electrochemical synthesis of γ-Fe2O3 

Magnetic γ-Fe2O3 nanoparticles were obtained by a method similar 
to the electrochemical synthesis of the γ-Fe2O3@MIL-88a composite. 
The only difference was that the linker (fumaric acid) was not added to 
the reaction mixture. And sodium chloride (0.877 g) was added to the 
electrolyte solution to increase the conductivity instead of potassium 
chloride. 

2.3. Synthesis of microcrystalline MIL-88a 

Microcrystalline MIL-88a (μMIL-88a) was obtained by the following 
method [64]. 0.6964 g of fumaric acid was dissolved in 150 ml of water. 
1.6218 g of FeCl3⋅6H2O was dissolved in 10 ml of water and was added 
to the fumaric acid solution. The residuals of FeCl3⋅6H2O were mixed 
with an additional 10 ml H2O and transferred to the reaction mixture. 
The total volume of the solution was 170 ml. It was placed in an oven for 
19 h at a temperature of 70 ◦C. Orange precipitate was washed one time 
with water, one time with ethanol, and dried. 

2.4. Photocatalytic studies 

Photocatalytic studies were carried out in transmission geometry on 
a double-beam UV2600 spectrometer (Shimadzu, Kyoto, Japan) equip-
ped with 10 mm quartz cells. 

596 μl of a 30% hydrogen peroxide solution was added to 100 ml of 
1 mg/ml methylene blue solution. After that, 20 mg of the respective 
catalyst was added to the mixture (see Table 2). The catalytic process 
was performed with vigorous stirring under white light irradiation 
(Table 2, conditions (1), (@-2), (@-4), (μ-2), (μ-4), (γ-2)) or in darkness 
(Table 2, conditions (@-1), (@-3), (μ-1), (μ-3), (γ-1)). Every 10 min, an 
2 ml aliquot was taken from the solution, and its absorbance spectrum 
was measured. The reference experiment was carried out in the same 
conditions under white light irradiation without a catalyst (see Table 2, 
conditions (1)). 

2.5. Characterization 

Fourier Transform Infrared (FTIR) spectra were obtained on a Vertex 
70 spectrometer (Bruker, Germany) in ATR (Attenuated total reflec-
tance) geometry using an MCT detector and a Bruker Platinum ATR 
accessory. The spectra were measured from 5000 to 500 cm− 1 with a 
resolution of 1 cm− 1 and 64 scans. The reference spectrum was collected 
in air. 

X-ray powder diffraction (XRPD) patterns were recorded on a D2 
Phaser diffractometer (Bruker AXS, Germany) operating at an acceler-
ation voltage of 30 kV and a tube current of 10 mA generating Cu Kα 
radiation (λ1 = 1,54056 Å, λ2 = 1.544390 Å). The data were collected 
with a step size of 0.01◦ and a counting time of 2 s per point from 5◦ to 
70◦ (2θ). Rietveld refinement was performed using FullProf software 
[78]. 

Thermogravimetric analysis (TGA) and differential scanning calo-
rimetry (DSC) was measured using an STA 449 F5 Jupiter instrument 
(Netzsch, Germany) by heating the sample to 800 ◦C at a rate of 5 ◦C per 
minute. The measurements were carried out in a corundum crucible in 
the airflow. 

To determine the shape and size of the synthesized crystallites, im-
ages were collected using a Tecnai G2 transmission electron microscope 
(FEI, Netherlands). 

Specific surface areas were calculated using the Brunauer - Emmett - 
Teller (BET) model from nitrogen adsorption isotherms measured on a 
Micromeritics ASAP (Accelerated Surface Area and Porosimetry) ASAP 
2020 (Micromeritics). The hydrogen capacity was calculated from the 
hydrogen adsorption thermals measured at 77 K. Samples were acti-
vated at 150 ◦C for 10 h under a dynamic vacuum before measurements. 

The spectra of γ-Fe2O3@MIL-88a were recorded using the equipment 
of the Kurchatov Synchrotron Radiation Source (National Research 
Center Kurchatov Institute, Moscow, Russia). The synchrotron radiation 
source was a storage ring with an electron beam energy of 2.5 GeV and a 
current in the range of 50–120 mA. The experiments were performed at 
the “Material structure” beamline [79]. Channel-cut Si(111) single 
crystal monochromator was used for monochromatization of the X-ray 
beam with an energy resolution ΔE/E = 2 × 10− 4. All the samples were 
ground finely, mixed with cellulose, and pressed into pallets. The XAS 
spectra at Fe K-edge were registered in transmission mode. The X-ray 
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intensity was measured using three tandem ionization chambers filled 
with N2. The studied sample was placed between the 1st and 2nd 
chambers and the reference between the 2nd and 3rd chambers. The 
integration time in every energy point was set to 1 s. In each case, up to 
three spectra were collected for their further averaging. Background 
subtraction and spectra normalization was carried out using the Athena 
program of the IFEFFIT software package [80]. A pre-edge background 
was subtracted from the entire spectrum. The obtained spectra were 
normalized using fitted EXAFS data beyond the near-edge structure. 

Magnetic measurements were carried out on a Lakeshore VSM 7404 
magnetometer. Magnetization curves were measured at room tempera-
ture in the field range from − 19 kOe to 19 kOe. There are at least 160 
points for each measurement with a shutter speed of 10 s per point. 

Mössbauer spectra were measured using an MS1104Em spectrometer 
equipped with the CCS-850 helium refrigerated cryostat chamber (Janis 
Inc.). 57Co in the Rh matrix was used as a source of gamma quanta. 
Model decoding of the spectra was carried out using the SpectrRelax 
software [81]. Isomer shifts were calculated relative to metallic α-Fe. 

3. Results and discussion 

3.1. Electrochemical synthesis 

In this work, the electrochemical method was used for the first time 
for the one-step preparation of γ-Fe2O3@MIL-88a composite. During 
electrochemical oxidation, the iron anode was dissolved to provide iron 
ions. The electrodes were placed in a solution of fumaric acid, which 
interacted with the iron ions to form γ-Fe2O3@MIL-88a precipitate. The 
electrochemical cell and the formation mechanism of γ-Fe2O3@MIL-88a 
are shown in Fig. 2 (a photo of the electrochemical cell is provided in SI 
Fig. S3a). 

The crystal lattice of MIL-88a contains Fe3+ ions. However, anode 
dissolution provided both Fe3+ and Fe2+ ions. We collected and studied 
supernatant to prove this statement. The solution of K3[Fe(CN)6] was 
added to one part of the liquid. It turned the color to the dark blue 
indicating presence of Fe2+ ions. The other part was tested with K4[Fe 
(CN)6] solution. Its additive resulted in the formation of dark blue KFe 
[Fe(CN)6] precipitate, which implied Fe3+ ion presence in the super-
natant (see Fig. S3b in SI). Thus, metallic iron was first oxidized to 
ferrous ions, and then Fe2+ ions were oxidized to ferric ions:  

А: Fe0 – 2 ē = Fe2+

Fe2+ – ē = Fe3+.                                                                                   

In this case, the release of gaseous hydrogen and partial reduction of 

iron ions occurred simultaneously at the cathode:  

C: 2H+ +2 ē = H2 xFe2+ + yFe3++ (2x+3y)ē = (x + y)Fe0.                      

The iron ions moved from the anode to the cathode region. Part of 
them participated in forming γ-Fe2O3 oxide. The other part of Fe3+ ions 
interacted with fumaric acid in the solution (Fig. 2c):  

3Fe3+ + 3H4C4O4 = Fe3O(C4H2O4)3(OH) + 9H+.                                     

Both competitive processes - the formation of γ-Fe2O3 and MIL-88a – 
run parallel. As a result, the surface of diamond-like MIL-88a crystals 
was decorated with γ-Fe2O3 nanoparticles forming γ-Fe2O3@MIL-88a 
composite. The obtained material was collected using a permanent 
magnet (Fig. 2d and e). 

3.2. Characterization 

TEM images were collected to determine the shape and size of the 
synthesized particles. The μMIL-88a sample comprised rod-like crystals 
with an average width of 400 nm and length of 1–4 μm (Fig. S4 in SI). 
The γ-Fe2O3@MIL-88a sample contained 100–350 nm in length and 
100–200 nm in width (Fig. 3). The diamond-like crystals were covered 
by small dense nanoparticles. 

We propose that the initial step of electrochemical synthesis was the 
formation of iron oxide nuclei. An energy barrier exists for nucleation, 
and thus a supersaturation of the solution is required to initiate the 
crystallization 21. Therefore, a certain time was needed to accumulate 
nuclei of FexOy species. According to high-resolution TEM images, 
control electrochemical synthesis without fumaric acid resulted in 
magnetic 8–9 nm nanoparticles of the γ-Fe2O3 sample (Fig. S5 in SI). It 
allowed us to conclude that these magnetic nanoparticles on the surface 
of MIL-88a crystals are γ-Fe2O3 (Fig. 3 d,f). They have a size distribution 
of 3–10 nm. 

The second stage is crystal growth. The rate of this process is not 
equal for different crystallographic planes. As a result, the square crys-
tals grow to form diamond-like ones. Further expansion of particles re-
sults in a rod-like shape. It is typical for MIL-88a, synthesized in a water 
medium [52]. We observed such morphology for the μMIL-88a sample 
(Fig. S4 in SI). Although water-based synthesis is preferred, obtaining 
MIL-88a diamond-like nanoparticles has only been possible using toxic 
solvents such as DMF [36,59]. To the best of our knowledge, the pro-
posed synthesis is the first technique that allowed the formation of 
diamond-like γ-Fe2O3@MIL-88a composite nanoparticles in a non-toxic 
water-based medium. 

The crystallinity and phase composition of μMIL-88a, γ-Fe2O3@MIL- 

Fig. 2. (a) An electrochemical cell and (b) the formation mechanism of γ-Fe2O3@MIL-88a: iron ions link with molecules of fumaric acid to form the nuclei of MIL-88a 
crystals, from which γ-Fe2O3@MIL-88a structure is formed (c). (d) The reaction mixture after synthesis, (e) the reaction mixture by exposure to a magnetic field. 
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88a and γ-Fe2O3 were determined by X-ray diffraction. The corre-
sponding results are shown in Fig. 4. XRD pattern of γ-Fe2O3 revealed a 
standard set of well-defined peaks at 30.2◦, 35.6◦ and 43.3◦, corre-
sponding to the (220), (311), and (400) reflections of the maghemite 
structure, respectively (COD #9006316). Rietveld refinement was car-
ried out to investigate structural features further. The lattice parameter 
of iron oxide was 8.36 Å, and the average crystallite size was about 8 nm. 
Moreover, some additional peaks were detected at 31.8◦ and 45.6◦

(Fig. S6 in SI). They were assigned to a sodium chloride phase (COD 
#2311042). Such impurity came from a NaCl added to the solution for 
better conductivity [50]. 

The diffractogram of μMIL-88a matched with the previously reported 
MIL-88a diffraction patterns, showing the well-known group of peaks at 
9.0◦, 10.8◦, and 11.9◦, corresponding to the reflections with indices 
(100), (101), and (002), respectively [34,37,60,82]. The ratio of the 
intensities of Bragg reflections (100) and (101) indicated the rod-like 
morphology of particles in agreement with TEM data and reported re-
sults [47,60,83]. According to the Rietveld structural analysis, the lat-
tice parameters of μMIL-88a were estimated as a = b = 11.35 Å and c =

14.88 Å. It corresponds to the result of the thermo-diffraction analysis 
for the as-synthesized structure provided by Mellot-Draznieks et al. [37]. 
It is well known that MIL-88a has a very flexible swelling structure [34, 
84], and its pores can be either open or closed. Such behavior is 
accompanied by a variety of lattice parameters over an extensive range, 
which leads to the change in the reciprocal position of the reflections. 
The more comprehensive investigation of the other visible peaks, 
especially ones with low intensity, is complicated, and unwanted mis-
conceptions can be made. For example, the analysis of a group of re-
flections at 20–25◦ (2θ) failed because the separation of MIL-88a 
contribution and possible phases of iron oxides can not be held clearly 
(Fig. S7 in SI). 

Comparison of the diffraction pattern of γ-Fe2O3@MIL-88a com-
posite with those of pristine μMIL-88a and γ-Fe2O3 led us to the 
following results. The composite material showed lower crystallinity 
than pristine μMIL-88a because most of the peaks corresponding to the 
MOF structure were weaker. Moreover, the (100) reflection of MIL-88a 
was not detected further, and the most intense (101) peak turned into a 
very weak additional feature at the tail of the (002) peak. Thus the 
relative intensity of (100) and (101) reflections remained the same, 
indicating a diamond morphology of the MOF. Interestingly, the (002) 
reflection remained very similar in shape but shifted for about 0.1◦ to-
wards a lower scattering angle. It may be assumed that all these changes 
were caused by the partly amorphized structure resulting from the 
contribution of magnetic iron oxide nanoparticles [85]. On the other 
hand, γ-Fe2O3 particles were pretty small, and TEM images implied their 
low contribution to the composite material. For this reason, direct visual 
observation of the iron oxide phase in γ-Fe2O3@MIL-88a composite by 
XRD was hampered, and only a weak trace of the (311) reflection was 
detected at about 35.9◦ (Fig. S8 in SI). According to the Rietveld 
refinement, the lattice parameters of the γ-Fe2O3@MIL-88a composite 
were estimated as a = b = 11.81 Å and c = 15.0 Å. Similar to the case of 
pristine γ-Fe2O3, additional peaks were observed at 28.5◦ and 40.6◦, 
which correspond to the KCl impurity phase. 

Fig. 5 shows FTIR spectra for γ-Fe2O3 nanoparticles, γ-Fe2O3@MIL- 

Fig. 3. TEM images (a–c) of γ-Fe2O3@MIL-88a composite, (d) γ-Fe2O3 nanoparticles on the surface of MIL-88a crystals, and size distribution (e) of MIL-88a and (f) 
γ-Fe2O3 nanoparticles. 

Fig. 4. XRD patterns of μMIL-88a, γ-Fe2O3@MIL-88a, and γ-Fe2O3. The pat-
terns were shifted along the y-axis for better representation. 
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88a composite, and μMIL-88a. Two pronounced and twin peaks in 
spectra of γ-Fe2O3 nanoparticles at 549 cm− 1 and 621 cm− 1, of 
γ-Fe2O3@MIL-88a at 551 cm− 1 and 611 cm− 1, and of μMIL-88a at 566 
cm− 1 and 641 cm− 1 were assigned to the iron-oxygen bond (Fe–O) [86]. 
The composite had a more pronounced and intense double peak, which 
indicated a higher concentration of iron in the composite than in 
μMIL-88a. The peaks detected at 671 cm− 1 and 673 cm− 1 for 
γ-Fe2O3@MIL-88a and μMIL-88a, respectively, corresponded to the 
carboxylate group (COO− ) ligands [87,88]. Distinct peaks at 800 cm− 1 

and 796 cm− 1 were assigned to the bending vibration C–H [89,90]. The 
peaks at 975 cm− 1, 982 cm− 1 and 1213 cm− 1, 1218 cm− 1 were 
explained by the stretching vibration C–C and C=C, respectively [91, 
92]. The characteristic asymmetric and symmetrical stretching fre-
quency C=O at 1601 cm− 1, 1598 cm− 1 and 1395 cm− 1, 1392 cm− 1, 
respectively, correlated with the coordinated carboxylate in fumaric 
acid [56]. This data confirmed the presence of iron and organic ligands, 
which fully corresponded to the chemical composition of MIL-88a. The 
γ-Fe2O3@MIL-88a composite was synthesized in an aqueous solution. 
Thus, a broad peak in the region between 3200 and 3400 cm− 1 was due 
to adsorbed water. The presence of water adsorbed by γ-Fe2O3@-
MIL-88a composite was confirmed using thermogravimetric analysis. 

The TGA and DSC curves are shown in Fig. 6. The first stage of weight 
loss was observed in the temperature range of 25–150 ◦C. It corre-
sponded to the release of water from the MIL-88a pores. The second 
weight loss was associated with an exothermic process of the framework 
collapse. Positive peaks were observed in the DSC curves of both samples 
in the temperature range of 200–500 ◦C. The step in the TGA curve and 
the peak in the DSC curve of μMIL-88a at 250–450 ◦C corresponded to 

the formation of iron oxide with carbon shell as solid residual. Further 
heating led to the formation of pure iron oxide, while the carbon shell 
interacted with oxygen, producing carbon dioxide. The same non- 
smooth curves were recorded for the γ-Fe2O3@MIL-88a sample. How-
ever, the effect was less pronounced. We suppose that it is attributed to 
less MIL-88a in the composite. Moreover, we expect that nanoparticles 
of MOF in the γ-Fe2O3@MIL-88a sample interacted with oxygen faster 
due to the larger active surface. 

The thermal decomposition of MIL-88a in the airflow corresponds to 
the following process:  

2 Fe3O(H2C4O4)3OH + 18 O2 = 3 Fe2O3 + 24 CO2 + 7H2O.                      

Theoretical weight loss for MIL-88a is 55.9% according to the for-
mula unit Fe3O(H2C4O4)3OH. Experimental weight loss for μMIL-88a 
was very close to this value. Contrary, the γ-Fe2O3@MIL-88a sample 
exhibited a lower weight loss of 45% due to the presence of γ-Fe2O3 
nanoparticles in the composition. In this case, iron oxide nanoparticles 
did not produce any gaseous products while heating in the air. There-
fore, γ-Fe2O3 nanoparticles in composite led to a more significant weight 
of solid residual after decomposition. According to experimental weight 
losses and formula unit of MIL-88a fixed as Fe3O(H2C4O4)3OH, we 
proposed the following compositions for synthesized samples: μMIL-88a 
‒ Fe3O(H2C4O4)3OH⋅5H2O, γ-Fe2O3@MIL-88a ‒ Fe3O 
(H2C4O4)3OH⋅0.8Fe2O3⋅4H2O. 

The specific surface areas of the γ-Fe2O3@MIL-88a composite and 
μMIL-88a, according to the BET model, were estimated as 128.5 m2g–1 

and 143.9 m2g–1, respectively (Fig. 7a). Both values are lower than 
theoretically predicted. According to reported data, the MIL-88a pos-
sesses a flexible framework [34,37]. Solvent exchange or evacuation 
affects the stabilization of open/closed modifications. We suppose that 
degas pretreatment stabilized the closed-form of MIL-88a, resulting in 
low BET surface areas. The same was observed previously [47,93,94]. In 
the IUPAC definition, the shape of μMIL-88a isotherm was assigned to 
type I. It is typical for microporous materials. On the other hand, the 
γ-Fe2O3@MIL-88a composite demonstrated the isotherm of type II. This 
shape is specific for non-porous or macroporous systems. We attributed 
this feature to the contribution of Fe2O3 nanoparticles. The pronounced 
hysteresis loop of the γ-Fe2O3@MIL-88a sample was attributed to the 
capillary condensation of nitrogen in meso-cavities. Its shape corre-
sponded to type H3 in IUPAC notification, typical for plate-like pores. 
We attributed such cavities to adsorption into spaces between the par-
ticles in agglomerates. 

We measured hydrogen sorption isotherm for both samples and 
observed the opposite trend (Fig. 7b). The μMIL-88a sample adsorbed 
0.63 wt % of hydrogen at 790 mmHg. The γ-Fe2O3@MIL-88a composite 
exhibited an H2 capacity of 0.17 wt % at the same pressure. Both N2 and 
H2 physisorption isotherms were measured at 77 K. It is a boiling tem-
perature for nitrogen. Thus, it can be physisorbed onto the solid surface 
by capillary condensation in the mesopores and a micropore volume 
filling mechanism. However, hydrogen possesses a critical temperature 
of 33 K. Thus, at 77 K, its physisorption refers to the monolayer coverage 

Fig. 5. FTIR spectra for γ-Fe2O3 nanoparticles (red), γ-Fe2O3@MIL-88a com-
posite (green), and μMIL-88a (blue). 

Fig. 6. TGA (solid lines) and DSC (dotted lines) curves for γ-Fe2O3@MIL-88a 
composite (green lines) and μMIL-88a (blue lines). Dashed gray lines represent 
the calculated position of the plateau according to the formula unit Fe3O 
(H2C4O4)3OH (1) and Fe3O(H2C4O4)3OH•0.8Fe2O3 (2). TGA curves 
were normalized. Fig. 7. Nitrogen (a) and hydrogen (b) adsorption-desorption isotherms.  
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over the solid surfaces without capillary condensation. It explains why 
the microporous μMIL-88a sample exhibited a higher H2 capacity than 
γ-Fe2O3@MIL-88a composite with non-porous Fe2O3 component and 
mesopores in agglomerates. 

3.3. Magnetic properties 

The results of magnetic hysteresis loops measurements for γ-Fe2O3 
nanoparticles (Fig. S9 in SI), μMIL-88a (Fig. S10 in SI), γ-Fe2O3@MIL- 
88a composite (Fig. S11 in SI) are summarized Table 1. 

The μMIL-88a was paramagnetic and did not reach saturation at the 
maximum field. The paramagnetism of this sample is explained by the 
fact that iron atoms in the sample do not form particles with a domain 
structure and are located only at the MOF sites. 

The γ-Fe2O3 sample comprised magnetic nanoparticles. This sample 
tended to saturation at the maximum field value. Its magnetization at 19 
kOe was estimated at 39.872 emu⋅g− 1. The coercive force of this sample 
was ~21 Oe, which corresponded to the Fe2O3 γ-phase with an average 
size of less than 9 nm [95,96]. 

The γ-Fe2O3@MIL-88a sample did not reach saturation at the 
maximum field. It is associated with the composition of the material. It 
contains mixture of magnetic nanoparticles and paramagnetic crystal-
line MIL-88a. The magnetization of this sample at 19 kOe was 2.8593. 
This sample had practically no residual magnetization and an order of 
magnitude lower coercive force. 

3.4. XANES 

The Fe K-edge XANES spectra for γ-Fe2O3 nanoparticles, γ-Fe2O3@-
MIL-88a composite, and μMIL-88a are presented in Fig. 8 (left). The 
rising edge position of the spectra corresponds to the oxidation state of 
Fe3+. On the one hand, the latter is in agreement with previous MIL-88a 

XANES studies [97]. On the other hand, it could be an additional 
argument in favor of the γ-Fe2O3 phase for iron oxide nanoparticles 
which are often confused with another spinel magnetic phase of iron 
oxide Fe3O4 that contains mixed-valence Fe atoms [98]. Although it 
could be clearly seen that the spectra of γ-Fe2O3@MIL-88a composite 
are quite similar to those of μMIL-88a, the magnetic measurements 
imply the presence of a magnetic phase in the composite sample. Based 
on this, it is possible to assume that the γ-Fe2O3@MIL-88a composite is 
formed from the mixture of magnetic γ-Fe2O3 nanoparticles phase and 
μMIL-88a. And thus, the spectra of γ-Fe2O3 nanoparticles and μMIL-88a 
reproduce the pure components that could reproduce the spectrum of 
composite materials. To check this hypothesis a linear combination fit 
(LCF) was performed for spectral interpretation. 

The quantitative estimation of the atomic percent of Fe atoms that 
correspond to γ-Fe2O3 nanoparticles and μMIL-88a phases in 
γ-Fe2O3@MIL-88a composite material was performed by linear combi-
nation fit XANES spectra (Fig. 8 right). The spectra of γ-Fe2O3 nano-
particles and μMIL-88a were used as reference components. The fitting 
procedure performed in different energy ranges gives similar results. 
Based on the LCF analysis, it was estimated that more than 80 at% of Fe 
atoms in γ-Fe2O3@MIL-88a composite material correspond to the μMIL- 
88a phase, and less than 19 at% of Fe atoms correspond to the γ-Fe2O3 
phase. A rough estimation of wt% for γ-Fe2O3 and MIL-88a phases based 
on LCF results suggests ~10 wt% of γ-Fe2O3 phase in a composite ma-
terial. This estimation shows relevant agreement with magnetization 
measurements and TGA data discussed above. 

Fig. 8. Left: XANES spectra measured for γ-Fe2O3 nanoparticles (red), γ-Fe2O3@MIL-88a composite (green), and μMIL-88a (blue). Right: The results of linear 
combination fit (grey) of γ-Fe2O3@MIL-88a composite XANES spectra (green) using two components: γ-Fe2O3 nanoparticles (red) and μMIL-88a (blue). The residual 
is shown in purple. The range of the fit is marked with dash lines at 7108 eV and 7228 eV. 

Table 1 
Magnetic properties of γ-Fe2O3 and γ- Fe2O3@MIL-88a composite.  

Sample Coercive 
force 
Oe 

Remanence 
emu⋅g− 1 

Magnetization 
emu⋅g− 1 

γ-Fe2O3 20.999 1.7991 39.872 
γ-Fe2O3@MIL- 

88a 
3.6037 4.2860⋅10− 3 2.8593  

Table 2 
Experiments of MB degradation. The k stands for rate constant according to 
pseudo-first-order (see details in SI Fig. S14b).  

Catalyst MB H2O2 light k, min− 1  

no + + + no (1) 
γ-Fe2O3@MIL-88a + – – no (@-1) 

+ – + no (@-2) 
+ + – 0.0103 (@-3) 
+ + + 0.0408 (@-4) 

μMIL-88a + – – no (μ-1) 
+ – + no (μ-2) 
+ + – no (μ-3) 
+ + + 0.0930 (μ-4) 

γ-Fe2O3 + + – no (γ-1) 
+ + + no (γ-2)  
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3.5. Mössbaer 

The Mössbaer spectra of a μMIL-88a sample measured at 300K and 
15K are shown in Fig. 9. The spectra are a superposition of two doublets 
at both temperatures with different quadrupole splitting Δ parameters 
(Table 2). In the μMIL88a sample, iron ions occupy two non-equivalent 
crystal positions. The isomer shift values correspond to Fe3+ ions in the 
high-spin state and octahedral environment [99]. The electric field 
gradient determines quadrupole splitting. In the case of Fe3+ ions, the 
electric field gradient is created by molecular orbital and lattice con-
tributions [100]. Since both positions are in the composition of the same 
crystal structure, the lattice contribution to the value of Δ will be the 
same. Thus, the difference in the Δ values of the D1 and D2 doublets is 
determined by the molecular orbital contribution, which is nonzero in 
the case of the presence of different ligands in the nearest environment 
of the Fe3+ ions. Probably, the doublet D1 with a smaller value of Δ 
corresponds to Fe3+ ions surrounded by O2− ions. Doublet D2 with a 
large value of Δ arises from Fe3+ ions surrounded by O2− and Cl− ions. 
The values of the areas of doublets are approximately proportional to the 
concentration of Fe3+ ions in the corresponding states. Since there are 
two types of the local environment of Fe3+ ions, their f-factors can differ. 
Therefore, to estimate the concentrations of Fe3+ ions in these states, the 
values of the areas of doublets at low temperatures should be used. At 
15 K, the areas of doublets D1 and D2 approximately coincide. 

The Mössbauer spectrum of the γ- Fe2O3@MIL-88a sample at room 
temperature (Fig. 10) also consists of two doublets: D and DS (Table 2). 
However, at temperatures below 70 K, Zeeman splitting lines appear in 
the spectra, and the doublet area DS decreases. At temperatures below 
55 K, the DS doublet disappears, and the area of the components cor-
responding to the Zeeman splitting increases. Probably, the DS doublet 
corresponds to nanoparticles of iron oxide or hydroxide, which exhibit 
superparamagnetic properties [101]. Suppose the frequency of super-
paramagnetic relaxation is greater than the frequency of the Larmor 
precession. In that case, the Zeeman structure of the Mössbauer spec-
trum of particles collapses into a doublet or singlet at temperatures 
below the Curie/Néel temperature. A decrease in temperature leads to a 
decrease in the frequency of superparamagnetic relaxation and a reso-
lution of the Zeeman splitting lines. In the presence of nanoparticles of 
different sizes in the sample under study, the Mössbauer spectrum can be 
a superposition of magnetically split lines and a quadrupole doublet. At 
the same time, Zeeman lines can be divided into a Zeeman sextet, cor-
responding to particles with a low relaxation frequency, and a sextet, 
related to particles whose relaxation frequency is approximately equal 
to the Larmor frequency of nuclear precession [101]. The Mössbauer 
spectra of the γ- Fe2O3@MIL-88a sample measured at 65 K consist of a 
Zeeman sextet S1 and doublets D and DS. The S1 sextet corresponds to 

Fe3+ ions in nanoparticles with locked magnetic moments. The DS 
doublet refers to Fe3+ ions in nanoparticles with unlocked magnetic 
moments. The D doublet is related to Fe3+ ions in the structure of the 
organometallic framework. At a temperature of 55 K, Zeeman splitting 
lines appear in the spectrum, which corresponds to Fe3+ ions in nano-
particles with a relaxation frequency close to the Larmor frequency 
[102]. To describe these lines, we used the model of multilevel super-
paramagnetic relaxation [103] implemented in the SpectrRelax program 
(SR sextet). When carrying out the model interpretation of the spectra, it 
was assumed that there was no magnetic interaction between the par-
ticles. The Mössbauer spectra of the γ- Fe2O3@MIL-88a sample 
measured at temperatures below 55K consist of the D doublet and the S1 
and SR sextets. Using the multilevel superparamagnetic relaxation 
model also made it possible to estimate the parameter α = (KeffV)/(kBT), 
where Keff is the magnetic anisotropy, V is the particle volume, and kB is 
the Boltzmann constant. At a known value of Keff, this parameter makes 
it possible to estimate the sizes of nanoparticles. The α sextet parameter 
of the SR Mössbauer spectra of γ- Fe2O3@MIL-88a varies from 0.68 at 
55K to 5.8 at 15K. Sextets S1 and SR can correspond to hematite, 
maghemite, or ferrihydrite nanoparticles. The Keff values for nano-
particles of these compounds, depending on the size, range from 1⋅104 

J⋅sm− 3 to 6⋅105 J⋅sm− 3 [104–109]. Thus, the sizes of superparamagnetic 
particles in the γ- Fe2O3@MIL-88a sample are distributed in the range 
from 4 to 10 nm. These data are in good agreement with the results of 
transmission electron microscopy. 

3.6. Photocatalytic experiments 

The photocatalytic properties of the synthesized samples were 
investigated via the reaction of methylene blue (MB) decomposition in 
hydrogen peroxide water solution. Fig. 11b represents the absorption 
spectrum of MB. Peaks at 664 and 612 nm correspond to the sulfur- 
nitrogen conjugated system [17]. The first one is usually attributed to 
MB monomer, while the shoulder at 612 nm refers to dimer formation 
[110]. The peak at 290 nm is assigned to the phenothiazine structure 
[17] (see Fig. S12a). 

In general, decolorization of MB solution could result from sorption 
or catalytic degradation. We performed an experiment to discard the 
sorption process. Each of the γ-Fe2O3@MIL-88a and μMIL-88a samples 
was mixed with MB solution without an H2O2 additive (Table 2, con-
ditions (@-1), (@-2), (μ-1), (μ-2)). However, we did not observe any 
significant changes (Fig. 11a, Fig. S13b in SI). Thus, the catalytic process 
was chosen as the main reason for MB degradation. 

The intensity of all absorption bands decreased gradually (Fig.11b, 
Fig. S12a). We observed the peak shift from 664 nm to 656 nm after 50 
min of the photocatalytic process (Fig. S12b). It indicates that MB 

Fig. 9. Mössbauer spectra of MIL-88a sample taken at 300K and 14K. (Points – experimental data, black line – fit, light brown – D1 doublet, light blue – D2 doublet, 
blue line – the difference between experimental data and fitting). 
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decomposition is directed toward the step-wise demethylation pathway 
of oxidative degradation [111]. The decrease of intensity of all peaks 
corresponds to the decomposition process. After 60 min absorption 
spectrum did not contain any new bands confirming the absence of any 
stable intermediate byproducts. We collected the liquid phase after the 
catalytic experiment to determine the composition of the products (see 
SI for details, Fig. S16). According to the FTIR spectrum, the liquid phase 
after catalysis contained sulfate ions and iron oxide species covered with 

fumaric acid molecules indicating the partial decomposition of the 
catalyst. The formation of SO4

2− ions was also prooved by forming white 
precipitate with BaCl2 solution (Fig. S16b). Thus we conclude that MB 
was decomposed into inorganic products such as SO4

2− , NO3
− , CO2 and 

H2O. 
As claimed in the introduction part, MIL-88a was applied as the 

catalyst for Fenton-like processes. Fenton process refers to enhancing 
H2O2 oxidative potential via metallic ions. The original mechanism was 
first reported in 1894 by Fenton for Fe2+ ions [112]. The main steps are 
flowing [113].  

(1) Fe2+ + H2O2 → Fe3+ + •OH + OH−

(2) •OH + H2O2 → HO2• + H2O  
(3) Fe2+ + •OH → Fe3+ + OH−

(4) Fe3+ + HO2• → Fe2+ + O2 + H+

(5) •OH + •OH → H2O2 

Thus, the first step is the oxidation of Fe2+ to Fe3+ by H2O2 molecules 
producing •OH-radicals. These radials degrade organic pollutants. Pro-
duced Fe3+ is reduced in further steps. It provides new Fe2+ ions for •OH 
formation. However, the process results in the accumulation of Fe3+ ions 
in the reaction mixture, which obstructs the further production of hy-
droxyl radicals. UV-irradiation leads to photochemical regeneration of 
Fe3+ ions. The UV-boosted process is known as the photo-Fenton reac-
tion [114]. It results in the production of more hydroxyl radicals, 
increasing the rate of organic pollutants degradation. Fe3+ regeneration 
occurs according to the following reactions [113]: 

Fig. 10. Mössbauer spectra of γ-Fe2O3@MIL-88a sample. (Points – experimental data, black line – fitting, light brown – DS doublet, light blue – D2 doublet, viol line 
– S1 sextet, green line – MSSR sextet, blue line – difference between experimental data and fitting). 

Fig. 11. (a) Catalytic efficiency for the MB degradation as a function of time in 
systems: (1) MB + H2O2 + light, (@-1) MB + γ-Fe2O3@MIL-88a, (@-2) MB +
γ-Fe2O3@MIL-88a + light, (@-3) MB + γ-Fe2O3@MIL-88a + H2O2, (@-4) MB +
γ-Fe2O3@MIL-88a + H2O2 + light. (b) Successive UV–vis absorption spectra of 
the MB degradation catalyzed by γ-Fe2O3@MIL-88a sample (conditions (@-4)). 
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(6) Fe3+ + H2O2 + hν → Fe2+ + •OH + H+

(7) Fe3+ + H2O2 + hν → Fe2+ + HO2• + H+

The μMIL-88a sample demonstrated photocatalytic properties ac-
cording to the photo-Fenton process (Fig. S15d in SI). Under the light 
irradiation, the μMIL-88a sample decolorized MB solution in 30 min, 
while in darkness, no changes were observed even after 1 h of mixing. 
Thus, H2O2 reduced Fe3+ in the μMIL-88a sample in the first stage to 
produce Fe2+ and •OH radicals under light irradiation (Eq.6). These 
radicals destroyed MB molecules. 

Unlike the μMIL-88a sample, the γ-Fe2O3@MIL-88a composite 
demonstrated catalytical performance even without light irradiation 
(Table 2, Fig. S14a in SI). After 1 h, 40% of the MB was converted. We 
attribute it to the promotional action of γ-Fe2O3 nanoparticles. Although 
the pure γ-Fe2O3 sample did not demonstrate any catalytic activity in 
MB degradation (Fig. S13a), its addition to MIL-88a crystals resulted in 
the superior performance of the composite in darkness. The Fe3+ ions in 
μMIL-88a and in γ-Fe2O3 samples can not be reduced via H2O2 without 
light irradiation. However, in the γ-Fe2O3@MIL-88a composite Fe3+

ions exhibited catalytic performance without light. We propose that the 
semiconductor nature of MIL-88a crystals promoted electron transfer, 
and Fe3+ ions on the surface of Fe2O3 nanoparticles were able to interact 
with H2O2 producing •OOH and Fe2+ ions. Lately, Fe2+ ions generated 
•OH radicals through a reaction with H2O2 (Eq. 1). However, the re-
action rate was relatively slow due to the low conversion of Fe3+ to Fe2+

by reacting with H2O2. Moreover, the generated •OOH radicals have 
much lower oxidation potentials than •OH. It led to a lower MB decol-
orization rate. 

Under light irradiation, the γ-Fe2O3@MIL-88a sample demonstrated 
superior photocatalytic performance. MB completely degraded under 
the light in H2O2 with γ-Fe2O3@MIL-88a in 1 h. The degradation rate 
was lower than those of the μMIL-88a sample. We attribute it to the 
different morphology of MIL-88a crystals. As discussed in the intro-
duction, the rod-like shape of μMIL-88a crystals is preferable for the 
Fenton-like process [47]. Moreover, sample γ-Fe2O3@MIL-88a is 
composed of MIL-88a crystals and γ-Fe2O3 particles. The last ones did 
not exhibit significant catalytic performance in applied conditions 
(Fig. S13a). However, these particles initiate the parallel reduction of 
Fe3+ ions. Thus, Fe2+ ions are generated from Fe3+ ions of the MIL-88a 
framework via the photo-Fenton process and from Fe3+ ions of γ-Fe2O3 
nanoparticles due to the promotional effect of MIL-88a semiconductor 
crystal (Fig. 12). Both Fe2+ ions interact with H2O2 providing •OH 
radicals for MB degradation. 

Moreover, the γ-Fe2O3@MIL-88a sample provides essential benefits 
in actual application due to magnetic properties for collecting a het-
erogeneous catalyst via a magnetic field for reuse. We investigated 
recycling options for the γ-Fe2O3@MIL-88a catalyst (see details in SI, 
part 6). It was shown that the material is stable in two cycles while 
starting from the third one, its effectiveness was reduced four times. The 
XRD powder patterns, FTIR spectra, and TGA of the catalyst after the 
third cycle showed significant degradation of its structure (Fig. S17). 
The MIL-88a component was decomposed due to the acidic medium of 
the reaction mixture, which was estimated at 4.6 after 10 min of the 
experiment and was decreased to 4.0 after 1 h. The protective shell was 
reported to increase the stability of MIL-88a catalysts in the acidic me-
dium [48]. 

4. Conclusions 

This work presents a new one-step electrochemical synthesis of nano- 
sized γ-Fe2O3@MIL-88a magnetic composite. Unlike other methods for 
preparing MIL-88a and composites, it does not require special and/or 
extreme conditions. Composite was obtained at room temperature and 
for a short time. Moreover, the synthesis did not require hazardous or 
toxic reagents. The γ-Fe2O3@MIL-88a sample comprised diamond-like 
MIL-88a nanocrystals and magnetic Fe2O3 particles. The 

electrochemical synthesis was interpreted as a multistep process. In the 
first stage, iron oxide species were formed in the reaction mixture as a 
result of Fe-anode dissolution. Later, part of these clusters acted as 
nuclei for MIL-88a growth, resulting in diamond-shaped MOF nano-
particles. It should be noted that due to crystal growth features, the 
synthesis of diamond-like MIL-88a nanoparticles without DMF is a 
challenging task. The other part of the iron oxide species grew and 
formed magnetic γ-Fe2O3 nanoparticles. Thus, the proposed electro-
chemical technique allowed us to obtain a composite of MIL-88a dia-
mond-like nanocrystals with magnetic nanoparticles on their surface as 
a one-pot room-temperature process. 

Using careful analysis of XANES and Mössbauer spectra and XRD 
patterns, we proved that magnetic nanoparticles are γ-Fe2O3. Obtained 
composite possessed magnetic properties and could be separated from 
the reaction mixture via a permanent magnet. 

We applied obtained composite for photo-Fenton degradation of MB 
in the presence of H2O2. Magnetic γ-Fe2O3 nanoparticles promoted the 
catalytic properties of the obtained material. Even without light irradi-
ation, γ-Fe2O3@MIL-88a composite converted 40% of MB in an hour. 
Neither pure γ-Fe2O3 nor rod-shaped MIL-88a did not show any effect on 
MB solution without light. Moreover, γ-Fe2O3 particles provided a 
magnetic response to composite. It gives a great advantage to hetero-
geneous catalysts. Obtained composite can be collected from the reac-
tion mixture via a permanent magnet for further recycling. We suppose 
that provided here, a one-pot electrochemical synthesis of magnetic 
composite for photo-Fenton dye degradation could be used for waste-
water treatment. 
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Fig. 12. Scheme of the photocatalytic process of MB degradation using 
γ-Fe2O3@MIL-88a sample. 
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