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ABSTRACT: X-ray absorption near-edge structure (XANES)
spectroscopy is a powerful characterization technique that is
sensitive to both three-dimensional (3D) geometry and the
electronic state of the selected element. In this work, we have
suggested a set of structural descriptors that can be used to
characterize the state of palladium nanoparticles in hydrogenation
reactions and explored the possibility of their extraction from Pd K-
edge XANES spectra. A theoretical spectral database was calculated
for palladium atoms in the bulk and at the (111) surface with
variable Pd−Pd interatomic distances. Carbon and hydrogen atoms
randomly occupied octahedral interstitial sites for different H/Pd
and C/Pd ratios. The presence of hydrogen and hydrocarbon
molecules adsorbed at the surface was also considered. The
obtained spectral database was subjected to the principal component analysis (PCA) to estimate the number of strongly contributing
components and the multivariate curve resolution (MCR) approach to deconvolve the whole set of data into the XANES spectra of
“pure” species and their concentrations. The latter were also used as descriptors of spectra, and machine learning (ML) algorithms
were then trained to predict them based on the descriptors of structure and vice versa. We have shown that some of the structural
parameters, namely, the concentration of surface-adsorbed molecules, have minor effects on the spectra and cannot be predicted. For
interatomic distances, their averaged value can be extracted with good prediction quality based on only one MCR concentration,
while independent prediction of the distances in the bulk or at the surface gives unsatisfactory results. Finally, we constructed a new
set of structural descriptors that have direct relevance to the MCR components.

■ INTRODUCTION
X-ray absorption near-edge structure (XANES) spectroscopy is
a powerful characterization technique that is sensitive to both
three-dimensional (3D) geometry and the electronic state of
the selected element. Since there is no universal method for
the extraction of structural information from XANES,
numerous approaches have been suggested, including those
based on the application of machine learning (ML)
algorithms.1−9 One of the first steps to describe the local
atomic environment was suggested by Carbone et al.,4 who
used the FEFF10 code to calculate the data set for different
types of coordination (symmetry) of eight (Ti, V, Cr, Mn, Fe,
Co, Ni, and Cu) transition 3d metals and applied supervised
ML for classification task, where classifiers were the type of
absorbing atom and the type of the first shell coordination.
The classification problem was solved with an accuracy of
more than 86%; however, the description of experimental
(even reference) spectra had several inaccuracies, primarily
related to the choice of the method for calculating theoretical
spectra. Kiyohara et al. made an attempt to describe the
oxidation state of a wide range of elements (46 oxide
configurations) based on the ELNES/XANES spectroscopy
data of oxygen K-edge.5 They used hierarchical clustering and

decision tree methods choosing classifiers as a possible set of
oxide geometries and a database of more than 300 000
theoretical spectra calculated within one-particle density
functional theory-generalized gradient approximation (DFT-
GGA) in CASTEP software.11 It should be noted that the work
of Timoshenko et al. made great advances in predicting the
coordination number and particle shape in metal clusters1−3 by
XANES spectroscopy using FEFF10 and FDMNES12,13 for
spectra calculations and neural networks as a basic prediction
algorithm. In more recent works,14 the authors used neural
networks for the prediction of the coordination numbers and
interatomic distances in small Pd and PdH clusters and active
sites in bimetallic CuPd clusters.15

The application of an ML procedure requires a training set.
Each spectrum in the training data set can be characterized by
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a set of structural descriptors (i.e., bond distances, bond angles,
atomic coordinates, types of ligands, etc.), which can be then
predicted by the trained algorithm. It should be noted that in
most of the cases, the user is not limited in the choice of
structural descriptors, which vary during the calculation of the
theoretical training set, expecting to further extract them from
the experimental spectra. Some of these descriptors, however,
may have the least importance for the shaping of XANES. In
particular, in a number of previous reports,16−19 we
demonstrated that both bulk and surface properties of
palladium nanoparticles (NPs), such as the formation of
hydrides and carbides in the bulk and adsorption of the
reactive molecules at the surface, induce changes in XANES,
but the amount of information that can be unambiguously
extracted from the spectral data has to be examined. We
investigate a possible dimensions reduction by the principal
component analysis (PCA) and link the pure components to
the structural descriptors. In the work of Tetef et al.,20

unsupervised ML was applied to a database of calculated
molecules to investigate better the performance of Variational
AutoEncoder, which is alternative to the PCA. However, this
method involves a more complicate procedure of under-
standing parametric space and its correlation with structural
descriptors.
In this work, we propose an original approach exemplified

on Pd K-edge XANES spectra for palladium NPs, in which a
theoretical database is subjected to multivariate curve
resolution (MCR) analysis to obtain a set of independent
components, whose concentrations are used as the descriptors
of spectra. An Extra Trees algorithm implemented in the
PyFitIt code21 was used to establish the correlations between
the MCR concentrations and descriptors of the structure.
Based on these correlations, a new set of structural descriptors
was constructed whose parameters can be predicted using only
one MCR component.

■ METHODS

The database of theoretical XANES spectra included in the
training set was calculated within the finite difference method
released in the FDMNES code.22−26 The calculation of one
spectrum in the optimized regime on six-core Intel Original
Core i7 X6 5930K @3.5 GHz (Haswell) processors took
around 1 h. To choose the convolution parameters, the
reference spectrum of bulk palladium foil was used. Then, the
convolution parameters were fixed for all theoretical spectra.
The adaptive energy range was used with 1 eV step in the
[−100, −15] eV range, 0.1 eV step in the [−15, 18] eV range,
and 2 eV step in the [18, 200] eV region. Then, after
optimizing the convolution parameters, only the [−10, 60] eV
range interpolated to a 1 eV step was utilized for the ML
analysis. The testing of different ML algorithms and principal
component analysis (PCA) was performed in the PyFitit
code.21 The Extra trees method was used. The algorithm
divided the space of geometric parameters p into non-
intersecting rectangles; in each of them, the objective function
is approximated by a linear function using the least-squares
method. Each node of the decision tree contained a condition
pj < t for one of the geometrical parameters pi, which divided
the training subset into parts. Initially, the overall training set
was randomly divided into training and validation subsets that
were used to train and evaluate the prediction quality of the
tree, respectively. Each leaf of the tree contained linear
approximations of XANES, which were constructed based on
the training subset for a given leaf. Thus, a single tree was a
form of specifying a piecewise linear function of geometric
parameters p1, ..., pk.
The multivariate curve resolution (MCR) procedure was

performed by means of the pymcr library.27 In this approach,
the whole data set initially represented by matrix D (m × n),
where m is the number of spectra and n is the number of
energy points, was decomposed as D = CST + E, where C (m ×
k) is the concentration profiles of k pure components from
matrix S(n × k) and E(m × n) is the error matrix. The MCR
analysis was performed fixing the sum of the concentrations to

Figure 1. Visual illustration of the structural descriptors.
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1 and using the non-negativity constrain. The cross-validation
(CV) procedure was applied to evaluate the quality of
prediction. The whole set of spectra was randomly separated
into 10 parts and each of the parts were subsequently used as a
validation set, while the other 90% were used as a training set.
Prediction quality was calculated based on CV R2-score (see eq
1) multiplied by 100%.

R
X F
X M

score 1 i i

i

2
2

2= −
∑ −
∑ − (1)

where ||..||2 corresponds to the L2 norm of a spectrum, the
numerator corresponds to the difference between the actual, X,
and predicted, F, value, and the denominator corresponds to
the difference between the actual value and the averaged value
over the whole training set.

■ RESULTS AND DISCUSSION
The initial choice of structural descriptors (i.e., the key features
that affect the spectral shape) (see Figure 1) was conditioned
by the expected structural changes and phases of palladium,
which were expected to be formed during hydrogenation
reaction, aiming to obtain additional information about the
processes that occur in the nanoparticles from XANES
data.16−19 We introduced Rsurf and Rbulk as the first shell
Pd−Pd interatomic distances in the surface and bulk,
respectively; Csurf and Cbulk as the relative amount of adsorbed
hydrocarbon molecules at the surface and the number of
carbon impurities in the bulk, respectively; Hsurf and Hbulk as
the respective hydrogen concentrations. The database
consisted of two parts, which we will refer to as surface and
bulk (examples of the used geometries are shown in Figure
S17). XANES spectra were calculated by averaging over all
nonequivalent positions for bulk and by averaging over all
surface atoms for surface model. The spectra for bulk and
surface were then merged using random values of the
parameter γ as a fraction of the surface. The interatomic
distances grid selection is the most trivial part due to the
simple variation of the unit cell volume. Therefore, for each

pair of C and H concentrations, 10 different values of RPd−Pd
were taken in [2.72−2.84] Å range and carbon and hydrogen
concentrations were varied from 0 to 25% for each RPd−Pd.
It should be noted that only the (111) surface was used, and

the model can therefore account for almost any size of
palladium clusters except for the ultrasmall ones, in which the
average coordination number is below 9. In the previous
work,8 we have also shown that the theoretical spectra of the
palladium nanoparticle calculated by averaging over all
inequivalent positions can be approximated by a linear
combination of the spectra for “bulk” and “surface” atoms.
The resulting database can be visualized in carbon/hydrogen

concentration space as shown in Figure 2. The scatters in the
figure correspond to the points for which the averaged
spectrum (over all inequivalent positions in the structure) was
obtained. It should be noted that it is possible to use random
or IHS sampling, but symmetric considerations for specific H/
Pd and C/Pd ratios allowed us to reduce the number of
calculated spectra. Considering, in addition, that such a grid
was constructed for different interatomic distances RPd−Pd for
both bulk (Rbulk) and surface (Rsurf), the data set consisted of
over 500 independent spectra (after averaging). The data set of
initial spectra (before averaging), which included the
calculation of spectra for every nonequivalent atom from the
108 atoms for bulk and 24 atoms for surface for every
combination of structural descriptors, contained about 10 000
entries. The number of atoms for the bulk and surface models
were chosen to provide a wide range of possible C/Pd and H/
Pd ratios (e.g., for a supercell of 108 Pd atoms one can start
with the C/Pd concentration below 1%). Finally, the spectra of
bulk and surface were mixed together, as a weighted average
using γ, which determines the fraction of the surface.
The resulting database was subject to MCR analysis (vide

infra).27−29 This is an efficient chemometric approach that was
successfully applied to extract both the spectra of the pure
species of the multicomponent systems and their concentration
profiles as a function of time, temperature, or gas atmosphere
from in situ and operando XAS data.30,31 The time evolution of
the multicomponent system with different behaviors of

Figure 2. Grids in two-dimensional parameter space for bulk (a) and surface (b) for which the theoretical spectra were obtained for each value of
Pd−Pd interatomic distance. Gray squares indicate the direction for the possible augmentation of the database.
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independent components is the key prerequisite for a
successful MCR analysis. If, for example, the two species
always evolve in a similar way or if they correspond to similar
XAS spectra, they cannot not be separated. The idea behind
the present study is beyond the above standard application of
the MCR technique. Instead, the subject of the analysis was a
theoretical data set of different palladium clusters, in which the
known structural parameters were taken instead of variable
external conditions in the case of experimental data sets. For
each of the local atomic and electronic states considered in the
theoretical model, one can expect to find the corresponding
MCR component. However, analogous to the experimental
data, if the effect on the shaping of XANES is similar, different
types of Pd species are indistinguishable. Therefore, the
analysis performed below allows us to determine what kind
and how many different species or phases one can extract from
XANES data sets as independent species.
As a preliminary step for the MCR procedure, the number of

independent components was estimated by the PCA applied to
determine the number of independent components in the
theoretical data set. The Scree plot (Figure 3) has two “elbow”

points that can be considered as the number of independent
components, 2 and 5. However, if only two components are
used, they are responsible only for the amount of γ (i.e., the
particle size) and interatomic distances (see Table S2), while it
is known from our previous experimental studies that the
formation of hydrides and carbides has also a prominent effect
on XANES.8,32−38

Therefore, based on PCA results, we performed MCR
analysis by assuming the presence of five independent species
and obtained their concentrations for each of the spectra in the
initial database. The MCR concentrations obtained by
projecting these spectra on the intermediate database (where
bulk and surface were separated) allowed us to perform a visual
qualitative attribution of these components to some of the
structural parameters (Figure 4). The analysis presented below

was also performed for the MCR concentrations obtained by
assuming different numbers of pure components (from two to
six) and confirmed the correctness of the choice of the five
components in terms of the maximal structural information
that could be extracted (vide infra).
To perform a more careful correlation between the obtained

MCR components and the structural descriptors, the
concentrations of MCR components were regarded as the
descriptors of spectra and their prediction was attempted using
ML algorithms. The CV procedure was used to quantify the
prediction quality of each component based on different
combinations of structural descriptors. The prediction quality
can be visually appreciated by plotting the predicted vs real
MCR concentrations (see Figures S1−S5). We have selected
the descriptors for the theoretical data set and trained the Extra
Trees algorithm. The Extra Trees method does not suffer from
overtraining and works well even for a small number of entries
in the training set. The optimal number of randomized trees
was adjusted to 70. Increasing the number of trees did not
improve the quality.
If the number of structural descriptors used for prediction is

equal to two, the prediction results can be visualized in 2D
maps for all possible pairs of descriptors (see Figure 5, for the
1st component and Figures S6−S9 for other components).
Background color in the figures refers to the predicted
concentration of the MCR component for the corresponding
pair of structural parameters. The outer part of the circles is
colored by the predicted value (from CV), while the real value
is shown in the centers of the circles.
For every MCR component, the ML algorithm was trained

to predict its concentration by every single descriptor, every
possible pair of descriptors, every triple of descriptors, etc.
Then, the best combinations were selected for each case. In
Table 1, we sorted the prediction results for each MCR
concentration by the prediction quality and selected the best
sets of n descriptors (n = {1,2,3,4,5,6}), increasing n until the
prediction quality above the user-defined value of 80% was
achieved. Analyzing the prediction quality and the set of
structural descriptors it was based on, we could conclude
which type of species each MCR component corresponded to.
Component 1 depends on Cbulk and γ. If Cbulk is 0, this

component does not depend on γ and its concentration is close
to 0 in the whole range of γ. If Cbulk is high, its concentration
decreases with γ. Finally, if γ = 1 (i.e., we have only the
surface), the component concentration almost does not
depend on Cbulk (and is close to 0). In the whole range of γ,
the concentration of the first MCR component increases with
Cbulk. Therefore, we can attribute this component to a bulk
carbide: if there is no carbide, this concentration is 0,
irrespective of particle size; and if the carbide is formed in
the bulk, its concentration is bigger for bigger particles.
The concentration of the second component increases with

increase in both Rbulk and Rsurf. Also, it also depends on γ:
higher the γ, stronger is the dependence on Rsurf; therefore,
decreasing γ increases the dependence on Rbulk. Therefore, this
component is responsible for the average particle size.
Component 3 is mainly dependent on γ, having higher

concentrations for big values of γ. In addition, for big γ (i.e., for
small particles), the dependence on Rsurf also exists: the
concentration decreases for big values of interatomic distance.
Therefore, this component is attributed to the contribution of
small particles (or the surface of the particles).

Figure 3. (a) All XANES spectra from the training set and (b)
variance described by each component (scree plot) obtained from
PCA.
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Component 4 depends on Cbulk and γ; however, unlike that
of the first component, its concentration decreases with
increasing Cbulk, and Hbulk should be also included as a
descriptor to improve the prediction quality. The concen-
tration increases with increasing Hbulk and the dependence is
stronger for small γ. Thus, this component corresponds to a
bulk palladium hydride.
The concentration of the fifth component decreases with

both Cbulk and Hbulk and, in addition, increases for small Rbulk.
Obviously, since all of the above structural descriptors are
related to the bulk, the dependence is stronger for small γ. In
contrast to the third component, component 5 represents big
metallic particles (i.e., bulk part of the particles without carbon
or hydrogen impurities).

To further prove the made assignment, we also tried to
correlate the differences in the shape of MCR components
with some known experimental spectra. Clearly, not every
species may have the exact experimental reference, especially in
the case of nanoparticles, but for MCR components 3−5, the
visual differences are in agreement with those observed in
experimental data for small palladium nanoparticles, palladium
hydride particles, and bulk palladium foil (Figure S16).
Although the initial theoretical model was constructed with

a set of seven well-defined structural parameters, two of them,
Csurf and Hsurf, did not occur in any of the combinations that
determine the concentration of MCR components. This means
that their effect on the shaping of XANES spectra is negligible
in comparison with other structural parameters. Most of the

Figure 4. Five spectra determined by the MCR analysis, and the concentration profile obtained by fitting with these spectra the intermediate
spectral database (where bulk and surface were separated). The ordering of the data set is as follows: first half of all spectra is the surface part and
the second is the bulk; carbon concentration increases within each part from the beginning (0%) to the end (25%); hydrogen concentration
increases from 0 to 25% within every 50−60 spectra; and interatomic distances increase from 2.72 to 2.84 within every 10 spectra.

Figure 5. Prediction of the first MCR component by pair of structural parameters sorted by prediction accuracy. Scatters correspond to the real
values with the outer shell of each circle colored by the ML-predicted value (during CV procedure) and the center of each circle colored by the real
value. The background color corresponds to the result of ML prediction. Similar plots for other MCR concentrations are reported in Figures S6−
S9.
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other parameters should be applied in combinations with each
other to establish a correlation between their values and the
concentrations of MCR components. This will also complicate
the solution of the inverse problem of extraction of these
structural parameters from the XANES spectra. Indeed, as can
be seen from Table S1, for most of the structural descriptors,
except γ, the prediction qualities hardly exceed 50% even if
multiple MCR concentrations are used as the descriptors of
spectra. For example, although Rbulk + Rsurf affects many MCR
components in Table 1, the quality of their prediction is poor
even if all five MCR concentrations are used.
To overcome the above issue, we suggest a set of novel

structural descriptors that are based on those initially used to
construct the spectral database but can be predicted with
better quality with the least number of MCR concentrations
(see Table 2). The new structural descriptors still possess

intuitive interpretation. The first one is the average interatomic
distance that mainly depends on the second MCR concen-
tration (Figure S10). It is calculated considering the fraction of
surface, γ, and different coordination numbers, Nbulk and Nsurf,
in the bulk and at the surface, respectively

R
N R N R

N N
(1 )

(1 )
bulk bulk surf surf

bulk surf

γ γ
γ γ

⟨ ⟩ =
· − · + · ·

· − + · (2)

The next descriptor is the degree of bulk metallic palladium,
which is constructed as

M C H
R

2 (0.5 ) (1 )
2.84
2.84 2.72bulk bulk bulk

bulkγ= · − − · − ·
−
−

(3)

The value of Mbulk is maximal for bulk metallic particles with
small interatomic distances and decreases with decreasing
particle size (increase of γ), increasing interatomic distances, or
addition of hydrogen or carbon. It mainly depends on the
concentration of the fifth component (Figure S11).
Finally, the relative amount of hydrogen with respect to

carbon in the bulk of the particle was defined as

H C
H
C

( / ) (1 )bulk
bulk

bulk
γ= · −

(4)

and characterized by the concentration of the fourth
component (see Figure S12).
In addition, since the Cbulk descriptor is relevant only to the

bulk of the particle, we used a product (1 − γ) · Cbulk as a new
descriptor, which is well correlated with the first MCR
component.
It is important to note that the absence of Csurf and Hsurf

does necessarily mean that they do not affect XANES spectra,
which is shown by us in several experimental studies.8,35,36,39

The main reasons for such a result is that (i) the changes in the
XANES spectra due to adsorption of one hydrogen or
hydrocarbon molecule are smaller than surrounding a bulk
palladium atom by H or C impurities and (ii) the changes
produced by surface and bulk Pd−C bonds are similar, in
agreement with previous reports; therefore, there is no
component (starting from PCA) that can discriminate bulk
phase from surface-adsorbed molecules.
Also, the possibility of extracting the average interatomic

distance only is highlighted. In the EXAFS analysis, the
limitation in discriminating small structural changes (i.e.,
distortions of structural parameters) around the absorbing
centers of the same type is known, and the minimal ΔR that
can be resolved can be calculated theoretically.40 In XANES,
there is no such equation; therefore, the procedure suggested
in this work provides a useful tool to examine the possibility of
the extraction of different structural parameters.

■ CONCLUSIONS
We have suggested a new strategy for selecting MCR
concentration as spectral descriptors for ML algorithms. The
application of such an approach for the theoretical spectra
allows us to examine how many and which structural
parameters can be potentially extracted from the XANES
spectra of the system of interest. This is specifically important
for the systems in which numerous structural changes can be
expected, but their significance for XANES shaping is not
evident (e.g., dynamic structure of the catalysts under reaction
conditions). The proposed approach was successfully
exemplified on Pd K-edge XANES spectra of the palladium
nanoparticles and might be potentially extended to any system.
The suggested PCA + MCR + ML approach can be used to
evaluate the set of structural parameters with the greatest
impact on the data. However, the choice of all possible
structural deformation and the derivation of new descriptors
that can be predicted with better quality definitely differs for
every system and also depends on the user choice. Especially,
the construction of the equation such as eqs 2−4 cannot be
performed automatically at the moment. Here, the theoretical
database was constructed to account for the changes in the
Pd−Pd distances as well as for the formation of Pd−C and
Pd−H bonds in the bulk and at the surface of the particles. For
such database, a new set of structural descriptors, which have

Table 1. Prediction Quality for the Five MCR Components
Using Different Combinations of Structural Descriptors

MCR
component

combination of
descriptors

prediction
quality
(%) interpretation

1 Cbulk 41 bulk palladium carbide
particlesCbulk + γ 83

2 Rbulk 30 particles with big
interatomic distancesγ + Rbulk 51

γ + Rbulk + Rsurf 76

γ + Rbulk + Rsurf + Cbulk 91

3 γ 71 small particles with small
averaged interatomic
distances

γ + Rsurf 90

4 Cbulk 34 bulk palladium hydride
(substituting the
carbide)

Cbulk + γ 70

Cbulk + γ + Hbulk 84

5 Cbulk 21 bulk metallic particles
with small interatomic
distances

Cbulk + γ 44

Cbulk + γ + Rbulk 65

Cbulk + γ + Rbulk + Hbulk 81

Table 2. Prediction Quality for the Structural Descriptors
Using Different Combinations of the Concentrations of
MCR Components

descriptor combination of MCR components prediction quality (%)

γ MCR3 77
⟨R⟩ MCR2 73
Mbulk MCR5 71
(1 − γ)·Cbulk MCR1 85
(H/C)bulk MCR4 77
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direct relevance to the determined MCR components, was
constructed. It was shown that the particle size can be
determined directly based on the concentration of one of the
MCR components. For other structural parameters, their
combinations, such as average interatomic distance or relative
bulk hydrogen concentration with respect to bulk carbon
concentration, or the amount of bulk metallic phase, can be
extracted. The surface-adsorbed molecules were not extracted
first due to their smaller effect on XANES spectra with respect
to the modifications induced by bulk insertion of H and C
impurities and second because K-edge XANES spectra cannot
distinguish whether the Pd−C or Pd−H bonds are formed in
the bulk or at the surface of the particle.
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