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Abstract: We report here fast (15 min) microwave-assisted solvothermal synthesis of zeolitic
imidazolate framework material (ZIF-7). We have optimized solvent composition to achieve high
porosity and hydrogen capacity and narrow particle size distribution. It was shown that synthesis in
N,N-diethylformamide (DEF) results in a layered ZIF-7 III phase, while N,N-dimethylformamide
(DMF) as solvent leads to a pure ZIF-7 phase in microwave conditions. A mixture of toluene with DMF
allows the production of pure ZIF-7 material only with the triethylamine additive. Obtained materials
were comprehensively characterized. We have pointed out that both X-ray diffraction and infrared
spectroscopy could be used for the identification of ZIF-7 or ZIF-7 III phases. Although samples
obtained in DMF, and in a mixture of DMF, toluene, and triethylamine were assigned to the pure ZIF-7
phase, solvent composition significantly affected the size of particles in the material and nitrogen and
hydrogen adsorption process.
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1. Introduction

The problem of depletion of natural energy sources, such as natural gas, oil, coal, as well as the
continuing growth in energy consumption in the 21st century, creates a colossal problem in the future.
Humanity needs a transition to clean renewable energy sources. Solar and wind energy meet these
criteria, but they are also characterized by frequent interruptions in energy production.

One of the most promising candidates for the role of a new energy source is hydrogen due to
its enormous energy density by weight of 142 MJ/kg, which is about three times the energy released
by gasoline and seven times the energy released by coal [1–4]. However, it is characterized by a very
low specific energy per unit volume. It creates problems related to its storage and transportation [5].
Another crucial step is the purifying of the obtained hydrogen. It could be produced according
to the list of protocols such as the water–gas shift with subsequent steam–methane reforming [6],
catalytic formic acid dehydrogenation [7], water splitting [8] and others. However, the obtained
hydrogen has to be purified or collected from the product mixture before it can be used. For this
purpose, membrane-based separators could be applied. One of the possible solutions is the use of
nanoporous materials, in particular the metal–organic frameworks (MOFs), for the physical adsorption
of hydrogen, which reduces energy costs without requiring low temperatures and high pressures for
liquefaction [9–15].

Flexible MOFs have recently attracted the attention of researchers due to their unique structure
and their use as gas separators [16,17], molecular probes [18,19], and drug delivery agents [20].
Many MOFs of this type can deform reversibly, changing their geometry and pore size by rotating
linkers around sigma bonds when interacting with gas molecules. Such structural deformation can
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lead to a sharp increase in the adsorption capacity of the material, as well as to an increase in the
sorption selectivity. Thanks to this deformation of the geometry, we can register stepped isotherms of
gas adsorption [21–23].

One of these flexible MOFs is the zeolitic imidazolate framework material (ZIF-7) framework
containing zinc tetrahedrally coordinated to the nitrogen atoms from benzimidazole molecules as
linkers. Such coordination leads to the formation of a sodalite (SOD) topology [24]. At the same
time, there are 3 phases of ZIF-7: rhombohedral R-3m ZIF-7-I, triclinic P-1 ZIF-7-II, and the most
dense monoclinic C2/c ZIF-7-III [25]. Phases ZIF-7-I and ZIF-7-II can reversibly pass into each other
when the amount of guest molecules of dimethylformamide (DMF) or other organic solvent changes,
as well as when the pressure of the gaseous product changes. However, the transition of ZIF-7-I
and ZIF-7-II to the ZIF-7-III phase occurs irreversibly when the pores of the material are saturated
with water molecules. This fact can be explained by the process of Zn-N bonds selective hydrolysis.
Thus, the method for ZIF-7 synthesis, in particular the choice of solvent, directly influences the process
of phase formation, and, therefore, the efficiency of the sorbent generally. The ZIF-7-I phase has the
highest sorption capacity, which means that it is the most attractive for various gas applications [25,26].
This material is already being used as a separator [27] and for hydrogen storage [28].

ZIF-7-I (hereinafter ZIF-7) was first obtained by Park et al. [29] by solvothermal reaction between
zinc nitrate tetrahydrate and benzimidazole in DMF solution. The process proceeded at 130 ◦C for 48 h.
Materials in studies [25,26,30–35] were also synthesized in a similar way. Variations of this technique
with varying synthesis times/temperatures was described [36–39]. Methods are also described that
allow the preparation of mixed linkers ZIFs, as well as core-shell structures [24,40]. However, all these
methods are lengthy and are characterized by medium product yields. Tu et al. [41] proposed a more
convenient method, which significantly reduced the synthesis time, excluding heating of the reaction
mixture, and increased the product yield (up to 78%) [42]. The mixture of zinc nitrate hexahydrate
and benzimidazole was dissolved in a mixture of DMF/methanol in a ratio of 1/1 and stirred at room
temperature for 30 min.

The solvent choice plays an essential role in the formation of ZIF-7 phases. As reported by
Reif et al. [43,44], replacing DMF with anhydrous diethylformamide (DEF) leads to the crystallization
of the ZIF-11 phase. The water content in DEF is a very important criterion because even small amounts
of H2O (over 0.3 wt.%) lead to product contamination with the ZIF-7-III phase. Replacing the solvent
with ethanol leads to the formation of the ZIF-7 phase [45–47]; however, the use of ethanol/toluene
mixture results in a pure ZIF-11 phase [28,45,46].

The process direction, the product yield, as well as the particles morphology can be changed
by introducing various modulators into the reaction solution. Bases-modulators play the most
important role. For example, carrying out the synthesis in a concentrated ammonia water solution
leads to the formation of the ZIF-7 phase rather than ZIF-7-III [48]. The use of ammonia in a DMF
solution accelerates the ZIF-7 synthesis even at room temperature [49]. Organic bases, in particular,
triethylamine (TEA), make it possible to obtain ZIF-7 in good yield in acetonitrile solution [50,51].
Diethylamine works in a similar way [52–54]. Among other used modulators, sodium formate can
be distinguished [55,56]. It also promotes the formation of the ZIF-7 layer on the various supports,
for example, aluminum oxide [57,58].

The morphology is also controlled by the selection of zinc salts. Cai et al. [53] studied the effect of
a metal source and modulators on the ZIF-7 particles formation. It was shown that the use of zinc
nitrate leads to the formation of spherical particles. Zinc acetate allowed the formation of rhombic
dodecahedral particles. ZIF-7 nanocrystals obtained from ZnCl2 have a shape of hexagonal prisms.
This phenomenon is associated with a strong interaction between Cl− and Zn2+, which significantly
affects the growth kinetics of ZIF-7 nanocrystals. This fact does not depend on the synthesis method,
i.e., ZIF-7 nanocrystals synthesized using traditional or microwave heating have a rod-like shape [59].
Polyhedra and rods were formed only in the presence of diethylamine. Zinc acetate dihydrate also
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allows obtaining ZIF-7 in a water/DMF mixture within a couple of minutes at room temperature,
which makes this technique the most effective [60].

Other synthesis methods were described, for example, using microwave irradiation [27,61],
ultrasonics [62], as well as their combination [63]. However, these methods are rare in the literature,
although they are very promising, since they can significantly accelerate the reaction rate, reduce the
temperature/synthesis time, and also obtain much smaller ZIF-7 particles.

ZIF-7 contains small pores with hexagonal windows of about 0.3 nm, which is optimal for the
separation of hydrogen (0.29 nm) from carbon dioxide (0.33 nm) or nitrogen (0.36 nm) [64]. This material
was successfully applied for the separation of hydrogen, and it showed high selectivity [58,64,65].
However, the flexibility of the ZIF-7 structure could lead to phase transitions and a “gate-opening”
effect, affecting separation properties. In this work, we focused on the preparation of ZIF-7 by the
microwave-assisted solvothermal method using various solvents.

2. Materials and Methods

Starting materials zinc nitrate hexahydrate (Zn(NO3)2·6H2O), benzimidazole (C7H6N2, bIm),
triethylamine (C6H15N, TEA), N,N-dimethylformamide ((CH3)2NCHO, DMF), N,N-diethylformamide
((C2H5)2NCHO, DEF), methanol (CH3OH), toluene (C7H8, PhMe), and isopropanol (C3H7OH) were
purchased from SigmaAldrich. Ultra-pure water (18 MΩ·cm) was obtained from distilled water using
SimplicityUV (Millipore).

We applied MW heating to obtain ZIF-7 materials with a fixed zinc source, temperature and
duration of synthesis. Simultaneously, we varied the solvent composition and TEA additive to trace
their effect on phase formation and the properties of the synthesized compounds.

Zinc nitrate hexahydrate 0.0812 g (0.27 mmol) and bIm 0.086 g (0.73 mmol) were dissolved in
5 mL of DEF (sample ZIF-7 DEF) or DMF (sample ZIF-7 DMF).

For the synthesis of the other two samples, a mixture of DMF and PhMe was prepared in a volume
ratio of 3/1 (D/P solution). Then, zinc nitrate hexahydrate 0.1098 g (0.35 mmol) was dissolved in
2.5 mL of D/P solution. Separately, bIm 0.086 g (0.73 mmol) was dissolved in 2.5 mL of D/P solution
(sample ZIF-7 D/P). TEA (126 µL) was added to the bIm solution to obtain sample ZIF-7 D/P TEA. After
that, the solutions of zinc nitrate and bIm were mixed. Molar ratios of precursors are presented in
Table 1.

Table 1. Molar ratio of precursors and conditions applied for optimization of Zn-ZIF-7 MW synthesis.

Sample Designation
Precursors Conditions

Phase According to XRD
Zn2+ bIm TEA Solvent t, ◦C Time, min

ZIF-7 DEF 1 2.7 0 DEF 140 15 ZIF-7 III
ZIF-7 DMF 1 2.7 0 DMF 140 15 ZIF-7
ZIF-7 D/P 1 2 0 DMF/PhMe 140 15 ZIF-7 + ZIF-7 III
ZIF-7 D/P TEA 1 2 2.6 DMF/PhMe 140 15 ZIF-7

Abbreviations: ZIF-7: zeolitic imidazolate framework material.

All the resulting solutions were then poured into 10 mL glass flasks and placed in a CEM Discover
microwave oven. The synthesis was carried out at 140 ◦C, power set to 75 W, and medium stirring
was performed for 15 min. After cooling the solutions to room temperature, the precipitates were
separated by centrifugation. We washed them three times with DMF and one time with isopropanol.
Then, the samples were dried at 60 ◦C overnight.

An FEI Tecnai G2 Spirit BioTWIN (FEI, USA) was used to perform transmission electron microscopy
(TEM) for imaging of the obtained samples. An accelerating voltage of 80 kV was used. Powder X-ray
diffraction (XRD) of samples was performed using a D2 Phaser (Bruker AXS Inc., Karlsruhe, Germany)
X-ray diffractometer. Data was collected in 2θ range −5◦–90◦ with a step size of −0.01◦ using Cu Kα
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radiation (λ = 1.540562 Å) at 30 kV and 10 mA. We used the Jana2006 software package for the analysis
of diffraction patterns [66].

A Bruker Vertex 70 spectrometer was applied for measurement of IR spectra. We used attenuated
total reflectance (ATR) geometry with air as the reference. The spectra were collected with a resolution
of 1 cm–1; 128 scans were made in the range from 5000 to 30 cm–1 on an MCT detector and a Bruker
Platinum ATR attachment.

Nitrogen adsorption isotherms were recorded at −196 ◦C on Accelerated Surface Area and the
porosimetry analyzer ASAP 2020 (Micromeritics). The specific surface area values were calculated
according to the Brunauer–Emmett–Teller (BET) model using nitrogen adsorption isotherms. Hydrogen
adsorption–desorption isotherms were measured at −196 ◦C as well and used to calculate the H2

capacities of materials. Before both measurements, samples were degassed at 250 ◦C for 12 h under a
dynamic vacuum.

3. Results and Discussion

All synthesized samples were highly crystalline materials, according to powder XRD (Figure 1a).
All diffraction peaks of the sample ZIF-7 DEF could be attributed to the monoclinic ZIF-7 III phase with
space group C2/c (no. 15) (see details in SI Table S1, Figure S2). Two other single-phase samples ZIF-7
DMF and ZIF-7 D/P TEA, could be considered pure ZIF-7 phase. All reflections were attributed to the
rhombohedral symmetry with space group R-3 (no. 148) (SI Table S1, Figure S3). Sample ZIF-7 D/P
is composed of two phases: ZIF-7 III with an admixture of ZIF-7 (Figure S2). We noticed that lattice
constants b of samples attributed to the ZIF-7 phase were almost similar regardless of solvent, while for
parameters a, we observed a clear trend. Samples synthesized in a mixture of DMF and PhMe exhibited
greater values of parameter a than ones obtained in pure DMF. This could be considered as a sign of
higher stability of the open modification of ZIF-7 flexible structure in case of synthesis in a mixture of
solvents. A broadening of reflections in the ZIF-7 D/P TEA profile was associated with the small size of
particles, which was estimated according to Williamson-Hall analysis as 46 nm (Figure S4).
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Figure 1. Powder X-ray diffraction (XRD) patterns (a) and FTIR-spectra (b) of synthesized samples.
In part (a) “ZIF-7 calc” (black line) and “ZIF-7 III calc” profiles (blue line) were calculated according to
crystallographic data from [25].

Based on profile analysis, we chose optimal conditions for ZIF-7 MW synthesis as were used for
samples ZIF-7 DMF and ZIF-7 D/P TEA. We concluded that for synthesis in the DMF solution, the TEA
additive obstructs the formation of the ZIF-7 phase (see SI Figure S5), while for a mixture of DMF and
toluene only with TEA additive, a single-phase ZIF-7 sample could be obtained.

FTIR spectra of synthesized samples are provided in Figure 1b. All obtained materials are
constructed from zinc ions and benzimidazole linkers. In this way, regardless of the phase composition,
samples should exhibit similar FTIR spectra. However, due to significant differences in the crystal
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structure of the obtained phases, FTIR spectra also deviate from each other, and they could be used for
phase identification as well (Figure S6, Table S2). According to XRD data, samples ZIF-7 DMF and
ZIF-7 D/P TEA are single-phase ZIF-7 materials. In good agreement with this statement, their spectra
contain the same modes. ZF-7 DEF sample was attributed to the ZIF-7 III phase, and its FTIR spectrum
deviates from others. Finally, the ZIF-7 D/P sample is composed of two phases, and its spectrum
contains modes assigned to both ZIF-7 and ZIF-7 III phases. The most significant differences could
be observed in the benzene ring vibrations. In the ZIF-7 phase, all benzene rings are located inside
spherical pores, while in the ZIF-7 III phase, they are directed into the spaces between layers (Figure S1).
In more detail, modes in the range 450–665 cm−1 could be assigned to vibrations of C-C-C bonds
in the benzene ring of the linker. In this region, two features could be observed in the ZIF-7 DEF
(ZIF-7 III) spectrum: an extinction of the peak at 665 cm−1 and a higher intensity peak at 455 cm−1.
Out-of-plane vibrations of C-H bonds give rise to peaks in region 740–905 cm−1 [67]. This region is
quite similar for both phases. The mode at 1005 cm−1 is attributed to C-C-C trigonal bending, and it
could be observed in all spectra as well. The next region at 1090–1275 cm−1 is associated with C-H
in-plane bending [67]. It contains a list of features. The spectrum of ZIF-7 DEF (ZIF-7 III) exhibits
one peak at 1110 cm−1, while the spectrum of ZIF-7 phases shows a double-peak in this region: 1090
and 1115 cm−1. The next mode at 1155 cm−1 can be observed only in the ZIF-7 III phase spectrum.
C-C stretching vibrations give rise to a peak at 1240 cm−1 in all spectra [67]. The region 1300–1365
cm−1 is attributed to C-N stretching vibrations, and it is similar for both ZIF-7 and ZIF-7 III phases.
Modes in region 1390–1610 cm−1 could be attributed to C=C stretching of a benzene ring. This region
differs significantly for spectra of ZIF-7 and ZIF-7 III phases. We observed the extinction of peaks at
1390 and 1405 cm−1 in the ZIF-7 III spectrum, while a peak at 1605 cm−1 observed for the ZIF-7 phase
transforms into a double-peak at 1600 and 1610 cm−1 in the ZIF-7 III spectrum. The peak at 1675 cm−1

in the spectrum of the ZIF-7 phase is assigned to C=N bonds [68].
We compared the shape of crystals for two single-phase samples ZIF-7 DMF (ZIF-7 phase) and

ZIF-7 DEF (ZIF-7 III) (Figure 2). In good agreement with the XRD data, the samples exhibited different
shapes of particles. The ZIF-7 DMF sample has a rhombohedral symmetry, and its crystals showed a
prismatic shape. In contrast, ZIF-7 DEF crystallized in flat plates about 1.5–2 µm.
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Figure 2. Transmission electron microscopy (TEM) images of synthesized samples ZIF-7
N,N-dimethylformamide (DMF) (a) and ZIF-7 N,N-diethylformamide (DEF) (b).

In good agreement with the XRD data, TEM images revealed the same shape of crystals in samples
ZIF-7 DMF and ZIF-7 D/P TEA assigned to the ZIF-7 phase (Figure 3). Despite their size, all particles
exhibit regular hexagonal or square shape, indicating high crystallinity of both samples. We observed
the broadening of reflections in the XRD profile of the ZIF-7 D/P TEA sample, attributed to the small
size of particles (46 nm, according to the Williamson-Hall analysis). Particle size distributions for ZIF-7
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DMF and ZIF-7 D/P TEA samples calculated according to TEM images are provided in Figure 3c,d.
They are in good agreement with data obtained from XRD profiles. According to the TEM images,
the average particle size for the ZIF-7 D/P TEA sample was estimated as 30–60 nm, while the ZIF-7
DMF sample is composed of nanoparticles about 50 nm, with an admixture of bigger particles about
100–300 nm.Energies 2020, 13, x FOR PEER REVIEW 6 of 12 
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Abbreviations: TEA: triethylamine

For two single-phase ZIF-7 samples, nitrogen adsorption-desorption isotherms were measured
(Figure 4a). The samples were activated at 250 ◦C for 12 h under a dynamic vacuum before both
measurements. Although ZIF-7 DMF and ZIF-7 D/P TEA have the same crystal structure, according
to XRD, their adsorption–desorption isotherms exhibit different shapes. Moreover, the ZIF-7 DMF
sample’s specific surface area is significantly lower than the ZIF-7 D/P TEA one. Values calculated
according to the BET model were estimated as 29 and 284 m2/g for ZIF-7 DMF and ZIF-7 D/P TEA,
respectively. For both ZIF-7 DMF and ZIF-7 D/P TEA samples, nitrogen adsorption is irreversible,
with a final amount of nitrogen entrapped inside the pores at low relative pressure. The adsorption
branch of the ZIF-7 D/P TEA isotherm contains steps in the low-pressure region attributed to adsorption
into the micropores. The pronounced hysteresis loop could be observed at relative pressure higher than
0.7. We assigned it to adsorption into the spaces between nanoparticles in aglomerates. Conversely,
the adsorption branch of ZIF-7 DMF isotherm demonstrates nitrogen adsorption blockage. Despite the
equivalent phase composition and post-synthetic treatment, pores of the ZIF-7 D/P TEA sample are
available for nitrogen molecules, while the ZIF-7 DMF sample can not adsorb them. It could be
attributed to the gate-opening effect. As it was reported previously, rotation of benzimidazole linker
around σ-bonds leads to the reversible phase transition of ZIF-7. “Closed” modification possesses a
pore aperture of about 3 Å, while the “open” phase could permit molecules up to 5 Å [33,69]. In this
way, nitrogen could be adsorbed only by “open” modification, while closed pores will be completely
unavailable for N2 molecules. It was reported that CO2 or CH4 could initiate ZIF-7 phase transition due
to interaction with benzimidazole linkers, while inert N2 will be completely unavailable [33]. However,
we have observed that this statement is in good agreement with data for the sample ZIF-7 DMF,
while the sample ZIF-7 D/P TEA exhibited obvious permanence for nitrogen molecules and, therefore,
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gate-opening effect. As it was reported previously, post-synthetic treatment dramatically affects the
shape of nitrogen adsorption isotherms and consequently calculated porosity of ZIF-7 samples [42].
We suppose that solvent exchange is responsible for different sorption processes of ZIF-7 DMF and
ZIF-7 D/P TEA samples. According to XRD and TEM data, ZIF-7 D/P TEA sample is composed of
nanoparticles about 50 nm, while sample ZIF-7 DMF contains big particles about 90–100 nm along
with small ones (40–50 nm). The solvent exchange process occurs faster in small particles, so the
ZIF-7 D/P TEA sample could be exchanged faster as well. Secondly, according to synthesis conditions,
before solvent exchange and activation, pores of the ZIF-7 DMF sample were filled with pure DMF,
while pores of the ZIF-7 D/P TEA sample contained a mixture of DMF, PhMe, and TEA. This mixture
could be evacuated in mild conditions due to lower boiling point and chemical activity.
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According to nitrogen adsorption isotherms, we have concluded that the “gate-opening” effect is
responsible for different porosity of ZIF-7 samples. In the case of ZIF-7 D/P TEA we have observed
phase transition to the large-pore modification of ZIF-7, while in the case of ZIF-7 DMF in all pressure
range, ZIF-7 preserves the closed-pore structure and it obstructs N2 sorption. However, one could
suggest another explanation for this phenomenon: the ZIF-7 DMF sample is not porous at all because
the guest molecules or defects somehow block its pores. To exclude this possibility, we additionally
measured hydrogen adsorption-desorption isotherms for both samples (Figure 4b). Sample ZIF-7 D/P
TEA exhibits higher H2 capacity both at low and ambient pressures. At 20 mmHg, the ZIF-7 DMF
sample adsorbed 0.065 wt.% of H2, while the ZIF-7 D/P TEA sample adsorbed 0.11 wt.% of H2 at the
same pressure. At 700 mmHg, capacities of H2 were estimated as 0.245 and 0.335 wt.% for samples
ZIF-7 DMF and ZIF-7 D/P TEA, respectively. Adsorption and desorption branches of H2-isotherms do
no merge with each other. This hysteresis could indicate the interaction of hydrogen molecules with
the pore surface. According to previous calculations, H2 in the ZIF-7 structure could be attracted by
the two benzene rings of bIm in a perpendicular orientation [70].

In this way, we have observed that despite completely blocked nitrogen adsorption ZIF-7 DMF
sample still could adsorb hydrogen molecules. Small H2 molecules are able to penetrate the pores
even across close windows. It proves that a solvent could affect phase transition during the activation
process of ZIF-7. The sample obtained in DMF solution did not demonstrate a “gate-opening” effect
during nitrogen adsorption, while synthesis in a mixture of DMF with PhMe resulted in the material
which could adsorb nitrogen and exhibited a relatively high specific surface area.
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4. Conclusions

We have investigated the effect of solvent and TEA additive on phase formation during the
microwave-assisted solvothermal synthesis of ZIF-7. Synthesis in DEF leads to the formation of pure
layered ZIF-7 III phase, while a mixture of DMF and toluene results in the formation of a mixture
of two phases ZIF-7 III and ZIF-7. TEA additive is crucial for the production of single-phase ZIF-7
material in a mixture of DMF and toluene. Alternatively, ZIF-7 could be synthesized in DMF without
additives. To sum up, we have obtained single-phase ZIF-7 material using MW heating for 15 min
at 140 ◦C in pure DMF (sample ZIF-7 DMF) or in a mixture of DMF with toluene and TEA (sample
ZIF-7 D/P TEA). Then, we compared ZIF-7 materials obtained according to these optimal conditions.
Although both samples exhibited similar XRD patterns and FTIR spectra, they differed from each
other significantly. First, sample ZIF-7 D/P TEA showed narrow particle size distribution with an
average size of particles about 40–50 nm according to both TEM images and Williamson-Hall analysis
of the XRD profile. Sample ZIF-7 DMF contained both nanoparticles about 50 nm and an admixture of
bigger crystals about 100–300 nm. Secondly, these samples have demonstrated different flexibility of
the structure. Nitrogen adsorption in the ZIF-7 DMF sample was almost completely blocked, while
sample ZIF-7 D/P TEA possessed a relatively high specific surface area of 284 m2/g. It indicated that
the “gate-opening” effect in the first sample is obstructed, while the second one is flexible and could
be transformed into the “open” modification even in a nitrogen atmosphere. Sample ZIF-7 D/P TEA
showed slightly higher hydrogen capacity over the whole relative pressure range than the ZIF-7 DMF
sample. So sample ZIF-7 D/P TEA is available for both nitrogen and hydrogen molecules. In the case of
the ZIF-7 DMF sample, only hydrogen molecules could penetrate pore windows, while N2 molecules
are too big, and its adsorption is completely blocked. In this way, we conclude that the solvent affected
the phase composition of the samples, particle size distribution, and flexibility of the structure.
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Figure S2: Powder XRD patterns of samples of ZIF-7 DEF (left one) and ZIF-7 D/P (right one): observed (black),
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(dark blue). The short vertical bars indicate the Bragg positions of the reflections (obtained using the Jana2006
program package)., Figure S4: Powder XRD patterns of samples ZIF-7 DMF (pink one) and ZIF-7 DMF TEA
(green one). Powder profile ZIF-7 calc was calculated according to crystallographic data., Figure S5: Plot of the
Williamson-Hall analysis of the profile of the ZIF-7 D/P TEA sample., Figure S6: FTIR-spectra of samples ZIF-7
DEF (dark blue, ZIF-7 III phase) and ZIF- DMF (red, ZIF-7 phase)., Table S1: Details of the profile analysis of
the synthesized samples. Table S2. Assignments of observed peaks on experimental FTIR spectra of ZIF-7 DEF
(designated as ZIF-7 III) and ZIF-7-DMF (designated as ZIF-7).
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